skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dependence of the gyrotron efficiency on the azimuthal index of non-symmetric modes

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.4886141· OSTI ID:22299752
 [1]; ;  [2]
  1. Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, LV-1063Riga (Latvia)
  2. Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

Development of MW-class gyrotrons for future controlled fusion reactors requires careful analysis of the stability of high efficiency operation in very high-order modes. In the present paper, this problem is analyzed in the framework of the non-stationary self-consistent theory of gyrotrons. Two approaches are used: the one based on the wave envelope representation of the resonator field and the second one based on representation of this field as a superposition of eigenmodes, whose fields are determined by a self-consistent set of equations. It is shown that at relatively low beam currents, when the maximum efficiency can be realized in the regime of soft self-excitation, the operation in the desired mode is stable even in the case of a very dense spectrum of competing modes. At higher currents, the maximum efficiency can be realized in the regimes with hard self-excitation; here the operation in the desired mode can be unstable because of the presence of some competing modes with low start currents. Two 170 GHz European gyrotrons for the international thermonuclear experimental reactor are considered as examples. In the first one, which is the 2 MW gyrotron with a coaxial resonator, the stability of operation in a chosen TE{sub 34,19}-mode in the presence of two sideband modes with almost equidistant spectrum is analyzed and the region of magnetic fields in which the oscillations of the central mode are stable is determined. The operation of the second gyrotron, which is the 1 MW gyrotron with a cylindrical cavity currently under development in Europe, is studied by using the wave envelope approach. It is shown that high efficiency operation of this gyrotron in the TE{sub 32,9}-mode should be stable.

OSTI ID:
22299752
Journal Information:
Physics of Plasmas, Vol. 21, Issue 6; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English

Similar Records

Regions of azimuthal instability in gyrotrons
Journal Article · Fri Jun 15 00:00:00 EDT 2012 · Physics of Plasmas · OSTI ID:22299752

Stability of gyrotron operation in very high-order modes
Journal Article · Fri Jun 15 00:00:00 EDT 2012 · Physics of Plasmas · OSTI ID:22299752

Azimuthal Instability of Gyrotron Radiation
Journal Article · Tue Jan 03 00:00:00 EST 2006 · AIP Conference Proceedings · OSTI ID:22299752