skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Dynamic Waste Isolation Pilot Plant Performance Assessment Tool - 12490

Conference ·
OSTI ID:22293711
; ; ;  [1]; ;  [2]
  1. Enthought Inc, Austin, Texas, 78701 (United States)
  2. Sandia National Laboratories, Carlsbad, NM, 88220 (United States)

The Waste Isolation Pilot Plant (WIPP) Performance Assessment (PA) methodology comprises a toolbox used to demonstrate regulatory compliance of the repository after facility closure. The PA framework rests upon an extensive suite of computational codes. In some cases, significant alteration of code inputs is a tedious and difficult task. Due to the nature of the application for which they are used, PA codes used in support of WIPP regulatory compliance demonstration must satisfy stringent quality assurance requirements. Consequently, many of the coding practices used during original code development are still implemented today. A more efficient workflow configuration has the potential to alleviate difficulties associated with extensive code input modifications. Here, this potential is assessed via an implementation of a more flexible scientific workflow system for a subset of the codes used in WIPP PA. The scientific workflow approach taken here for a dynamic PA system enables users from disparate backgrounds to dramatically shorten the time between hypothesis and analysis by decreasing the amount of a priori knowledge, from a range of disciplines, needed to execute the code. Having smaller iteration times allows for more ideas to be tested and explored, which leads to safer and more optimized systems. Note that these high-level, dynamic tools are intended only for initial scoping studies on the personal computer of a researcher. Full, regulatory compliance calculations may occur only within a qualified computing environment. However, the WIPP PA tools here may guide future research and indicate regions of the analysis space that are worth further study. This next generation of PA software provides the ability to perform scoping investigations of repository performance quickly and easily, and has an accessible and useful interface to a variety of users, such as fuel cycle systems designers, domain experts such as repository modelers, and policy makers. The purview of this project allows for many opportunities for future work. Foremost among these is the desire to implement the full BRAGFLO suite within the workflow. This will entail porting or wrapping Genmesh, Matset, LHS, and ICSet within Python. Moreover, unifying the two GUIs into a single driver application would be a natural next step. Once the BRAGFLO suite is completed, other portions of WIPP PA could be implemented with corresponding and inter-operable work-flows. Likely first candidates for this are those codes that are similarly computationally intensive, such as the one used to generate complementary cumulative distribution functions used to demonstrate regulatory compliance (code CCDFGF). (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI ID:
22293711
Report Number(s):
INIS-US-14-WM-12490; TRN: US14V1367115235
Resource Relation:
Conference: WM2012: Waste Management 2012 conference on improving the future in waste management, Phoenix, AZ (United States), 26 Feb - 1 Mar 2012; Other Information: Country of input: France; 7 refs.
Country of Publication:
United States
Language:
English