skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monoclinic nanodomains in morphotropic phase boundary Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3}

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4866791· OSTI ID:22293075
 [1];  [2]
  1. Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1, Mutsuno, Atsuta, Nagoya 456-8687 (Japan)
  2. Institute of Engineering Innovation, The University of Tokyo, 2-11-16, Yayoi, Bunkyo, Tokyo 113-8656 (Japan)

Crystalline structure is a fundamental characteristic of many materials, and drastic changes in properties may accompany crystal phase transitions. A prominent example of this is the morphotropic phase boundary of (Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3}) single crystal, a region that exhibits a high piezoelectric effect. Although the highest piezoelectricity is often attributed to a monoclinic crystal phase, formation of ferroelectric nanodomains (NDs) complicates understanding of this crystal structure. In this Letter, we report dedicated transmission electron microscopy and electron diffraction analysis to understand the crystal structure at the ND level. Splitting of diffraction spots, caused by very small lattice distortion in the NDs, is important to understanding crystal structure and has been unambiguously observed. The results can be explained by monoclinic phase NDs. Combining these results with our previous findings on ND dynamics [Sato et al. Phys. Rev. Lett. 107, 187601 (2011)], monoclinic NDs can potentially make a considerable contribution to the piezoelectricity in these materials.

OSTI ID:
22293075
Journal Information:
Applied Physics Letters, Vol. 104, Issue 8; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English