Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

Journal Article · · Toxicology and Applied Pharmacology
; ;  [1];  [2]; ; ;  [3];  [4];  [1]
  1. Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC (United States)
  2. The Rutgers Center for Computational and Integrative Biology, Rutgers University, Camden, NJ (United States)
  3. NovaMechanics Ltd., Nicosia (Cyprus)
  4. Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC (United States)

Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function. • The results have potential applications to green chemistry. • Models are publicly available for virtual screening via a web portal.

OSTI ID:
22285396
Journal Information:
Toxicology and Applied Pharmacology, Journal Name: Toxicology and Applied Pharmacology Journal Issue: 1 Vol. 272; ISSN TXAPA9; ISSN 0041-008X
Country of Publication:
United States
Language:
English

Similar Records

Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods
Journal Article · Wed Oct 01 00:00:00 EDT 2014 · Toxicology and Applied Pharmacology · OSTI ID:22439864

Elucidation of Agonist and Antagonist Dynamic Binding Patterns in ER-α by Integration of Molecular Docking, Molecular Dynamics Simulations and Quantum Mechanical Calculations
Journal Article · Sun Aug 29 00:00:00 EDT 2021 · International Journal of Molecular Sciences (Online) · OSTI ID:1904946