skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Density of electronic states and dispersion of optical functions of defect chalcopyrite CdGa{sub 2}X{sub 4} (X = S, Se): DFT study

Journal Article · · Materials Research Bulletin
 [1]
  1. Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic)

Graphical abstract: - Highlights: • FPLAPW method is used for calculating the electronic and optical properties of CdGa{sub 2}X{sub 4}. • Electronic and optical properties were calculated using LDA, GGA, EVGGA and mBJ. • Band gap conformed that CdGa{sub 2}X{sub 4} are semiconductors fit for UV and visible light. • The ECD shows that change in the bond length and bond nature affect the band gap. • The dielectric tensor components and its derivatives show considerable anisotropy. - Abstract: A density functional theory (DFT) based on full potential linear augmented plane wave (FPLAPW) was used for calculating the electronic structure, charge density and optical properties of CdGa{sub 2}X{sub 4} (X = S, Se) compounds. Local density approximation (LDA), generalized gradient approximation (GGA), Engle Vasko generalized gradient approximation (EVGGA) and recently modified Becke–Johnson (mBJ) were applied to calculate the band structure, total and partial density of states. The investigation of band structures and density of states of CdGa{sub 2}X{sub 4} (X = S, Se) elucidate that mBJ potential show close agreement to the experimental results. The mBJ potential was selected for further explanation of optical properties of CdGa{sub 2}X{sub 4} (X = S, Se). The study of electronic charge density contours shows that change in the bond lengths and bond nature affect the band gap of the compounds. The two non-zero dielectric tensor components and its derivatives show considerable anisotropy between the perpendicular and parallel components. The present work provide accurate information about the combination (hybridization) of orbital, formation of bands and dispersion of non-zero tensor components of CdGa{sub 2}X{sub 4} (X = S, Se)

OSTI ID:
22285190
Journal Information:
Materials Research Bulletin, Vol. 48, Issue 11; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English