Effect of bismuth doping on the ZnO nanocomposite material and study of its photocatalytic activity under UV-light
Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuth nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.
- OSTI ID:
- 22285097
- Journal Information:
- Materials Research Bulletin, Journal Name: Materials Research Bulletin Journal Issue: 10 Vol. 48; ISSN MRBUAC; ISSN 0025-5408
- Country of Publication:
- United States
- Language:
- English
Similar Records
One-step in situ synthesis of graphene–TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic activity
Rapid synthesis, characterization and optical properties of TiO{sub 2} coated ZnO nanocomposite particles by a novel microwave irradiation method