skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: AGB stars and presolar grains

Abstract

Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals.more » Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.« less

Authors:
;  [1];  [2];  [3]
  1. INFN and University of Perugia, Perugia (Italy)
  2. INAF - Arcetri Astrophysical Observatory, Firenze, Italy and INFN - Section of Perugia, Perugia (Italy)
  3. Departamento de Fìsica Teòrica y del Cosmsos, Universidad de Granada, Granada (Spain)
Publication Date:
OSTI Identifier:
22280410
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1595; Journal Issue: 1; Conference: 7. European summer school on experimental nuclear astrophysics, Santa Tecla, Sicily (Italy), 15-17 Sep 2013; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ALUMINIUM 26; ALUMINIUM OXIDES; ASTROPHYSICS; CAPTURE; CARBON 12; CARBON 13; COSMOLOGY; DWARF STARS; ELEMENT ABUNDANCE; ISOTOPE RATIO; METEORITES; NITROGEN 14; NITROGEN 15; NUCLEOSYNTHESIS; OXYGEN ISOTOPES; S PROCESS; SILICON CARBIDES

Citation Formats

Busso, M., Trippella, O., Maiorca, E., and Palmerini, S. AGB stars and presolar grains. United States: N. p., 2014. Web. doi:10.1063/1.4875288.
Busso, M., Trippella, O., Maiorca, E., & Palmerini, S. AGB stars and presolar grains. United States. doi:10.1063/1.4875288.
Busso, M., Trippella, O., Maiorca, E., and Palmerini, S. 2014. "AGB stars and presolar grains". United States. doi:10.1063/1.4875288.
@article{osti_22280410,
title = {AGB stars and presolar grains},
author = {Busso, M. and Trippella, O. and Maiorca, E. and Palmerini, S.},
abstractNote = {Among presolar materials recovered in meteorites, abundant SiC and Al{sub 2}O{sub 3} grains of AGB origins were found. They showed records of C, N, O, {sup 26}Al and s-element isotopic ratios that proved invaluable in constraining the nucleosynthesis models for AGB stars [1, 2]. In particular, when these ratios are measured in SiC grains, they clearly reveal their prevalent origin in cool AGB circumstellar envelopes and provide information on both the local physics and the conditions at the nucleosynthesis site (the H- and He-burning layers deep inside the structure). Among the properties ascertained for the main part of the SiC data (the so-called mainstream ones), we mention a large range of {sup 14}N/{sup 15}N ratios, extending below the solar value [3], and {sup 12}C/{sup 13}C ratios ≳ 30. Other classes of grains, instead, display low carbon isotopic ratios (≳ 10) and a huge dispersion for N isotopes, with cases of large {sup 15}N excess. In the same grains, isotopes currently feeded by slow neutron captures reveal the characteristic pattern expected from this process at an efficiency slightly lower than necessary to explain the solar main s-process component. Complementary constraints can be found in oxide grains, especially Al{sub 2}O{sub 3} crystals. Here, the oxygen isotopes and the content in {sup 26}Al are of a special importance for clarifying the partial mixing processes that are known to affect evolved low-mass stars. Successes in modeling the data, as well as problems in explaining some of the mentioned isotopic ratios through current nucleosynthesis models are briefly outlined.},
doi = {10.1063/1.4875288},
journal = {AIP Conference Proceedings},
number = 1,
volume = 1595,
place = {United States},
year = 2014,
month = 5
}
  • The strontium, zirconium, molybdenum, and barium isotopic compositions predicted in the mass-losing envelopes of asymptotic giant branch (AGB) stars of solar metallicity and mass 1.5, 3, and 5 M{sup {circle_dot}} are discussed and compared with recent measurements in single presolar silicon carbide (SiC) grains from the Murchison meteorite. Heavy-element nucleosynthesis via the s-process occurs in the helium intershell, the region between the helium-burning and hydrogen-burning shells, producing heavy elements beyond iron. After a limited number of thermal runaways of the helium shell (thermal pulses), at the quenching of each instability, the convective envelope penetrates into the top layers of themore » helium intershell (third dredge-up), mixing newly synthesized {sup 12}C and s-process material to the stellar surface. Eventually, the envelope becomes carbon-rich (C {>=} O), a necessary condition for SiC grains to condense. In the helium intershell, neutrons are released by (a, n) reactions on {sup 13}C and {sup 22}Ne during interpulse phases and the thermal pulses, respectively. A {sup 13}C pocket is assumed to form in a tiny region in the top layers of the helium intershell by injection of a small amount of protons from the envelope during each third dredge-up episode. This {sup 13}C then burns radiately during the interpulse phase. The average neutron density produced is low, but of long duration, so the total neutron exposure is high. We have explored a large range of possible {sup 13}C abundances in the pocket. In low-mass AGB stars (1.5 M{sup {circle_dot}} {<=} M {<=} 4 M{sup {circle_dot}}), a second small burst of neutrons is released by marginal {sup 22}Ne burning in the thermal pulse. The neutron density reaches quite a high peak value but is of short duration, so the neutron exposure is low. In intermediate-mass AGB stars (4 M{sup {circle_dot}} < M {<=} 8 M{sup {circle_dot}}), the {sup 22}Ne neutron source is more efficiently activated. The neutron capture process has been followed with a postprocessing code that considers all relevant nuclei from {sup 4}He to {sup 210}Po. The predicted isotopic compositions of strontium, zirconium, molybdenum, and barium in the envelopes of low-mass AGB stars of solar metallicity are in agreement with the isotopic ratios measured in individual presolar SiC grains, whereas predictions for intermediate-mass stars exclude them as the sources of these grains. A multiplicity of low-mass AGB stars with metallicity around solar, having different masses and experiencing different neutron exposures, are required to account for the measured spread in heavy-element isotopic compositions among single presolar SiC grains. The range of neutron exposures corresponds, on average, to a lower mean neutron exposure than that required to reproduce the s-process main component in the solar system.« less
  • We compared carbon-rich grains with isotopic anomalies to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites condensed in the ejecta of core-collapse supernovae. Furthermore, we present a new set of models for the explosive He shell and compare them with the grains showing 12C/ 13C and 14N/ 15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. All of the explosion energies and Hmore » concentrations are considered. If the supernova shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the puzzle of the Ne-E(L) component in LD graphite grains. This scenario is attractive for the SiC grains of type AB with 14N/ 15N ratios lower than solar, and provides an alternative solution for SiC grains originally classified as nova grains. Finally, this process may contribute to the production of 14N and 15N in the Galaxy, helping to produce the 14N/ 15N ratio in the solar system.« less
  • Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less
  • We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as theirmore » stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less
  • Isotopic ratios of C, N, Si, and trace heavy elements in presolar SiC grains from meteorites provide crucial constraints to nucleosynthesis. A long-debated issue is the origin of the so-called A+B grains, as of yet no stellar progenitor thus far has been clearly identified on observational grounds. We report the first spectroscopic measurements of {sup 14}N/{sup 15}N ratios in Galactic carbon stars of different spectral types and show that J- and some SC-type stars might produce A+B grains, even for {sup 15}N enrichments previously attributed to novae. We also show that most mainstream grains are compatible with the composition ofmore » N-type stars, but in some cases might also descend from SC stars. From a theoretical point of view, no astrophysical scenario can explain the C and N isotopic ratios of SC-, J-, and N-type carbon stars together, as well as those of many grains produced by them. This poses urgent questions to stellar physics.« less