skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Finding a spherically symmetric cosmology from observations in observational coordinates — advantages and challenges

Journal Article · · Journal of Cosmology and Astroparticle Physics
 [1]
  1. Departamento de Física-Matemática, Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21.945-970, Rio de Janeiro, R.J. (Brazil)

One of the continuing challenges in cosmology has been to determine the large-scale space-time metric from observations with a minimum of assumptions — without, for instance, assuming that the universe is almost Friedmann-Lemaître-Robertson-Walker (FLRW). If we are lucky enough this would be a way of demonstrating that our universe is FLRW, instead of presupposing it or simply showing that the observations are consistent with FLRW. Showing how to do this within the more general spherically symmetric, inhomogeneous space-time framework takes us a long way towards fulfilling this goal. In recent work researchers have shown how this can be done both in the traditional Lemaître-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in the observational coordinate (OC) framework, in which the radial coordinate y is null (light-like) and measured down the past light cone of the observer. In this paper we investigate the stability of solutions, and the use of data in the OC field equations including their time evolution — i.e. our procedure is not restricted to our past light cone — and compare both approaches with respect to the singularity problem at the maximum of the angular-diameter distance, the stability of solutions, and the use of data in the field equations. We also compare the two approaches with regard to determining the cosmological constant Λ. This allows a more detailed account and assessment of the OC integration procedure, and enables a comparison of the relative advantages of the two equivalent solution frameworks. Both formulations and integration procedures should, in principle, lead to the same results. However, as we show in this paper, the OC procedure manifests certain advantages, particularly in the avoidance of coordinate singularities at the maximum of the angular-diameter distance, and in the stability of the solutions obtained. This particular feature is what allows us to do the best fitting of the data to smooth data functions and the possibility of constructing analytic solutions to the field equations. Smoothed data functions enable us to include properties that data must have within the model.

OSTI ID:
22277786
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2011, Issue 07; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English