Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Misalignment-free signal propagation in nanomagnet arrays and logic gates with 45°-clocking field

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4859996· OSTI ID:22273966
A key obstacle for the application of Magnetic Quantum-dot Cellular Automata (MQCA) is the misalignment of clocking field, which results in low stability for both signal propagations within nanomagnet array and logic operation in majority gates. Here, we demonstrate that a reversal clocking field applied at 45° off the hard axis, with progressively reduced amplitude, applied to a shape-tuned nanomagnet array fabricated by e-beam lithography, helps intrinsically eliminate the misalignment sensitivity of the elements and results in correct signal propagation. Further, least reversal steps and reduced field amplitude was required owing to the 45°-clocking field. This clocking field was also tested for majority gates (OR function) and characterized by Magnetic Force Microscopy demonstrating correct output. This novel design provides high stability for signal propagation and logic operation of MQCA and potentially paves way for its application.
OSTI ID:
22273966
Journal Information:
Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 17 Vol. 115; ISSN JAPIAU; ISSN 0021-8979
Country of Publication:
United States
Language:
English