skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of ion and nanosecond-pulsed laser co-irradiation on the surface nanostructure of Au thin films on SiO{sub 2} glass substrates

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4871016· OSTI ID:22273628
; ;  [1]; ; ; ;  [2]
  1. Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)
  2. Center for Advanced Research of Energy and Materials Science, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

Ion irradiation and short-pulsed laser irradiation can be used to form nanostructures on the surfaces of substrates. This work investigates the synergistic effects of ion and nanosecond-pulsed laser co-irradiation on surface nanostructuring of Au thin films deposited under vacuum on SiO{sub 2} glass substrates. Gold nanoparticles are randomly formed on the surface of the substrate after nanosecond-pulsed laser irradiation under vacuum at a wavelength of 532 nm with a repetition rate of 10 Hz and laser energy density of 0.124 kJ/m{sup 2}. Gold nanoparticles are also randomly formed on the substrate after 100-keV Ar{sup +} ion irradiation at doses of up to 3.8 × 10{sup 15} ions/cm{sup 2}, and nearly all of these nanoparticles are fully embedded in the substrate. With increasing ion irradiation dose (number of incident laser pulses), the mean diameter of the Au nanoparticles decreases (increases). However, Au nanoparticles are only formed in a periodic surface arrangement after co-irradiation with 6000 laser pulses and 3.8 × 10{sup 15} ions/cm{sup 2}. The periodic distance is ∼540 nm, which is close to the wavelength of the nanosecond-pulsed laser, and the mean diameter of the Au nanoparticles remains at ∼20 nm with a relatively narrow distribution. The photoabsorption peaks of the ion- or nanosecond-pulsed laser-irradiated samples clearly correspond to the mean diameter of Au nanoparticles. Conversely, the photoabsorption peaks for the co-irradiated samples do not depend on the mean nanoparticle diameter. This lack of dependence is likely caused by the periodic nanostructure formed on the surface by the synergistic effects of co-irradiation.

OSTI ID:
22273628
Journal Information:
Journal of Applied Physics, Vol. 115, Issue 14; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English