Nanoparticle generation and transport resulting from femtosecond laser ablation of ultrathin metal films: Time-resolved measurements and molecular dynamics simulations
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)
The synthesis of metal nanoparticles by ultrafast laser ablation of nanometers-thick metal films has been studied experimentally and computationally. Near-threshold backside laser ablation of 2–20 nm-thick Pt films deposited on fused silica substrates was found to produce nanoparticles with size distributions that were bimodal for the thicker films, but collapsed into a single mode distribution for the thinnest film. Time-resolved imaging of blackbody emission from the Pt nanoparticles was used to reveal the nanoparticle propagation dynamics and estimate their temperatures. The observed nanoparticle plume was compact and highly forward-directed with a well-defined collective velocity that permitted multiple rebounds with substrates to be revealed. Large-scale molecular dynamics simulations were used to understand the evolution of compressive and tensile stresses in the thicker melted liquid films that lead to their breakup and ejection of two groups of nanoparticles with different velocity and size distributions. Ultrafast laser irradiation of ultrathin (few nm) metal films avoids the splitting of the film and appears to be a method well-suited to cleanly synthesize and deposit nanoparticles from semitransparent thin film targets in highly directed beams.
- OSTI ID:
- 22273403
- Journal Information:
- Applied Physics Letters, Journal Name: Applied Physics Letters Journal Issue: 19 Vol. 104; ISSN APPLAB; ISSN 0003-6951
- Country of Publication:
- United States
- Language:
- English
Similar Records
Dynamics of the plumes produced by ultrafast laser ablation of metals
A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting
Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: Application to high surface area substrates
Journal Article
·
Sun Aug 15 00:00:00 EDT 2010
· Journal of Applied Physics
·
OSTI ID:21484501
A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting
Journal Article
·
Mon May 18 00:00:00 EDT 2015
· Applied Physics Letters
·
OSTI ID:22402467
Atomic layer deposition of ultrathin platinum films on tungsten atomic layer deposition adhesion layers: Application to high surface area substrates
Journal Article
·
Wed Jan 14 23:00:00 EST 2015
· Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films
·
OSTI ID:22392103