skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. II. GALAXY STRUCTURAL MEASUREMENTS AND THE CONCENTRATION OF MORPHOLOGICALLY CLASSIFIED SATELLITES IN DIVERSE ENVIRONMENTS

Journal Article · · Astrophysical Journal
; ; ; ; ; ; ;  [1];  [2];  [3];  [4]
  1. Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)
  2. Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583 (Japan)
  3. Department of Astronomy, Columbia University, New York, NY 10027 (United States)
  4. Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany)

We present structural measurements for the galaxies in the 0.05 < z < 0.0585 groups of the Zurich Environmental Study, aimed at establishing how galaxy properties depend on four environmental parameters: group halo mass (M{sub GROUP}), group-centric distance (R/R{sub 200}), ranking into central or satellite, and large-scale structure density (δ{sub LSS}). Global galaxy structure is quantified both parametrically and non-parametrically. We correct all these measurements for observational biases due to point-spread function blurring and surface brightness effects as a function of galaxy size, magnitude, steepness of light profile, and ellipticity. Structural parameters are derived also for bulges, disks, and bars. We use the galaxy bulge-to-total ratios (B/T) together with the calibrated non-parametric structural estimators to implement a quantitative morphological classification that maximizes purity in the resulting morphological samples. We investigate how the concentration C of satellite galaxies depends on galaxy mass for each Hubble type and on M{sub GROUP}, R/R{sub 200}, and δ{sub LSS}. At galaxy masses M ≥ 10{sup 10} M{sub ☉}, the concentration of disk satellites increases with increasing stellar mass separately within each morphological bin of B/T. The known increase in concentration with stellar mass for disk satellites is thus due, at least in part, to an increase in galaxy central stellar density at constant B/T. The correlation between concentration and galaxy stellar mass becomes progressively steeper for later morphological types. The concentration of disk satellites shows a barely significant dependence on δ{sub LSS} or R/R{sub 200}. The strongest environmental effect is found with group mass for >10{sup 10} M{sub ☉} disk-dominated satellites, which are ∼10% more concentrated in high mass groups than in lower mass groups.

OSTI ID:
22270756
Journal Information:
Astrophysical Journal, Vol. 776, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English