Band gaps in InN/GaN superlattices: Nonpolar and polar growth directions
Journal Article
·
· Journal of Applied Physics
- Institute of High Pressure Physics, UNIPRESS, 01-142 Warsaw (Poland)
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark)
The electronic structures of nonpolar short-period InN/GaN superlattices (SLs) grown in the wurtzite a- and m-directions have been calculated and compared to previous calculations for polar superlattices (grown in the c-direction). The variation of the band gaps with the composition (m, n) of the mInN/nGaN unit cells of the superlattices was examined. The band structures were obtained by self-consistent calculations based on the local density approximation to the density functional theory using the Linear-Muffin-Tin-Orbital method with a semi-empirical correction for the band gaps. The calculated band gaps and their pressure coefficients for nonpolar superlattices are similar to those calculated for bulk InGaN alloys with an equivalent In/Ga concentration ratio. This is very different from what has been found in polar superlattices where the band gaps are much smaller and vanish when the number m of InN layers in the unit cell exceeds three. A strong internal electric field is responsible for this behavior of polar structures. Experimental photoluminescence data for polar SLs agree very well with gaps calculated for the nonpolar structures. It is suggested that this is caused by screening of the electric field in the polar structures by carriers originating from unintentional defects.
- OSTI ID:
- 22266170
- Journal Information:
- Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 22 Vol. 114; ISSN JAPIAU; ISSN 0021-8979
- Country of Publication:
- United States
- Language:
- English
Similar Records
Band gaps and internal electric fields in semipolar short period InN/GaN superlattices
Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices
Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices
Journal Article
·
Mon Jun 09 00:00:00 EDT 2014
· Applied Physics Letters
·
OSTI ID:22300025
Influence of internal electric fields on band gaps in short period GaN/GaAlN and InGaN/GaN polar superlattices
Journal Article
·
Fri Aug 21 00:00:00 EDT 2015
· Journal of Applied Physics
·
OSTI ID:22494774
Thermoelectric properties of In-rich InGaN and InN/InGaN superlattices
Journal Article
·
Fri Apr 15 00:00:00 EDT 2016
· AIP Advances
·
OSTI ID:22611676
Related Subjects
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
75 CONDENSED MATTER PHYSICS
SUPERCONDUCTIVITY AND SUPERFLUIDITY
ALLOYS
APPROXIMATIONS
CARRIERS
CONCENTRATION RATIO
CORRECTIONS
DENSITY FUNCTIONAL METHOD
ELECTRIC FIELDS
ELECTRONIC STRUCTURE
GALLIUM NITRIDES
INDIUM NITRIDES
MUFFIN-TIN POTENTIAL
PHOTOLUMINESCENCE
PRESSURE COEFFICIENT
SUPERLATTICES
GENERAL PHYSICS
75 CONDENSED MATTER PHYSICS
SUPERCONDUCTIVITY AND SUPERFLUIDITY
ALLOYS
APPROXIMATIONS
CARRIERS
CONCENTRATION RATIO
CORRECTIONS
DENSITY FUNCTIONAL METHOD
ELECTRIC FIELDS
ELECTRONIC STRUCTURE
GALLIUM NITRIDES
INDIUM NITRIDES
MUFFIN-TIN POTENTIAL
PHOTOLUMINESCENCE
PRESSURE COEFFICIENT
SUPERLATTICES