skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Cr-substitution concentration dependence of the structural, electric and magnetic behaviors for Aurivillius Bi{sub 5}Ti{sub 3}FeO{sub 15} multiferroic ceramics

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4849055· OSTI ID:22266126
; ; ; ; ;  [1]; ;  [2]; ;  [1]
  1. Key Lab of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241 (China)
  2. National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

Aurivillius Bi{sub 5}Ti{sub 3}FeO{sub 15} (BTFO) multiferroic ceramics with different Cr-doped concentrations have been synthesized by the conventional solid state reaction method. The influences of Cr-doping concentrations on the structural, magnetic, dielectric, and ferroelectric properties of BTFO ceramics are investigated in detail. All these sintered Cr-substituted BTFO ceramics are determined to be layered perovskite Aurivillius structure by X-ray diffraction, as well as the lattice parameters a, b, and c are in good accordance with Vegard's law along with the Cr-doping concentration. The lattice distortion a/b for Aurivillius family decreases with increasing Cr-doping concentration. Moreover, Cr-doping can promote greatly the grain growth of BTFO samples confirmed from field emission scanning electron microscopy characterization. However, no obvious signs of the improvement in ferroelectric properties are found in Cr-doped BTFO ceramics, and abnormal ferroelectric polarization versus electric field (P-E) loops are observed as Cr-doping content is beyond 0.1. Similar ε (tanδ) versus frequency plots to those of the BTFO sample are exhibited when Cr-doping concentration is less than 0.1. Nevertheless, obvious dielectric dispersion phenomena are shown as the Cr-doping concentration is beyond 0.1, and this dispersion behavior becomes strong with further increasing Cr-doping concentration, which are clearly indicated by the appearance of dielectric loss relaxation peaks in the measurement frequency from 10{sup 2} Hz to 10{sup 6} Hz. In addition, the corresponding frequency to relaxation peak shifts towards high frequencies with the Cr-doping concentration. Finally, the same magnetic orderings for all these Cr-doped BTFO ceramics as those of the BTFO one, i.e., superparamagnetic state dominated with antiferromagnetic interaction, are unambiguously found, signifying that the predicted Fe{sup 3+}-O-Cr{sup 3+} 180° ferromagnetic superexchange interaction based on the Goodenough-Kanamori (G-K) rule might not be achieved in BTFO ceramics through Cr substitution by the conventional solid state reaction.

OSTI ID:
22266126
Journal Information:
Journal of Applied Physics, Vol. 114, Issue 23; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English