skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermo-structural development of the ITER ICRF strap housing module

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4864564· OSTI ID:22263880
 [1]; ;  [2]
  1. Max-Planck Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany)
  2. EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

Since March 2010 the preliminary design of the ITER ICRF Antennas have been developed by CYCLE, a consortium consisting of IPP (Garching), CCFE (Culham), CEA (Cadarache), Politecnico di Torino (Torino) and LPPERM/KMS (Brussels). This paper describes the steps taken to develop the present geometry of the triplet pair Strap Housing Module from a thermal and structural perspective, and shows the critical areas of the structure. Key issues are the manufacturability, (achieved by HIPing - Hot Isostatic Pressing), the ability to handle the radiating plasma thermal flux of 0.35 MW/m{sup 2}, the RF losses and the neutronic radiation. HIPing is necessary to achieve the complicated system of cooling channels inside the structure, which divides the coolant equally in order to supply each strap in the triplet with 1 l/s of water. The components have also to withstand the strong mechanical forces generated by plasma disruptions affecting all internal structures and the elevated design cooling water pressure of 5MPa. In order to maximise reliability, joints between different materials in the cooling water system have been kept to a minimum. Therefore, in the interests of fabricability and availability, the whole structure is manufactured out of stainless steel (316L(N)IG). The low conductivity of 316L(N)IG demands small wall thicknesses to avoid hot spots; however this reduces the mechanical strength. Consequently an in depth FEM analysis is presented, which was used to find and to improve the critical aspects of this important component and was the best means of finding the optimum between thermal and mechanical performance.

OSTI ID:
22263880
Journal Information:
AIP Conference Proceedings, Vol. 1580, Issue 1; Conference: 20. topical conference on radiofrequency power in plasmas, Sorrento (Italy), 25-28 Jun 2013; Other Information: (c) 2014 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English