skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Circumferential or sectored beam arrangements for stereotactic body radiation therapy (SBRT) of primary lung tumors: Effect on target and normal-structure dose-volume metrics

Journal Article · · Medical Dosimetry
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [5]; ;  [7]
  1. Broad Institute of MIT and Harvard, Cambridge, MA (United States)
  2. Macalester College, St. Paul, MN (United States)
  3. The University of North Carolina, Chapel Hill, NC (United States)
  4. Santa Clara University, Santa Clara, CA (United States)
  5. Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR (United States)
  6. Department of Internal Medicine, Providence St. Vincent Medical Center, Portland, OR (United States)
  7. Department of Radiation Medicine, Oregon Health and Science University, Portland, OR (United States)
  8. Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA (United States)

To compare 2 beam arrangements, sectored (beam entry over ipsilateral hemithorax) vs circumferential (beam entry over both ipsilateral and contralateral lungs), for static-gantry intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 60 consecutive patients treated using stereotactic body radiation therapy (SBRT) for primary non–small-cell lung cancer (NSCLC) formed the basis of this study. Four treatment plans were generated per data set: IMRT/VMAT plans using sectored (-s) and circumferential (-c) configurations. The prescribed dose (PD) was 60 Gy in 5 fractions to 95% of the planning target volume (PTV) (maximum PTV dose ∼ 150% PD) for a 6-MV photon beam. Plan conformality, R{sub 50} (ratio of volume circumscribed by the 50% isodose line and the PTV), and D{sub 2} {sub cm} (D{sub max} at a distance ≥2 cm beyond the PTV) were evaluated. For lungs, mean doses (mean lung dose [MLD]) and percent V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} Gy were assessed. Spinal cord and esophagus D{sub max} and D{sub 5}/D{sub 50} were computed. Chest wall (CW) D{sub max} and absolute V{sub 30}/V{sub 20}/V{sub 10}/V{sub 5} {sub Gy} were reported. Sectored SBRT planning resulted in significant decrease in contralateral MLD and V{sub 10}/V{sub 5} {sub Gy}, as well as contralateral CW D{sub max} and V{sub 10}/V{sub 5} {sub Gy} (all p < 0.001). Nominal reductions of D{sub max} and D{sub 5}/D{sub 50} for the spinal cord with sectored planning did not reach statistical significance for static-gantry IMRT, although VMAT metrics did show a statistically significant decrease (all p < 0.001). The respective measures for esophageal doses were significantly lower with sectored planning (p < 0.001). Despite comparable dose conformality, irrespective of planning configuration, R{sub 50} significantly improved with IMRT-s/VMAT-c (p < 0.001/p = 0.008), whereas D{sub 2} {sub cm} significantly improved with VMAT-c (p < 0.001). Plan delivery efficiency improved with sectored technique (p < 0.001); mean monitor unit (MU)/cGy of PD decreased from 5.8 ± 1.9 vs 5.3 ± 1.7 (IMRT) and 2.7 ± 0.4 vs 2.4 ± 0.3 (VMAT). The sectored configuration achieves unambiguous dosimetric advantages over circumferential arrangement in terms of esophageal, contralateral CW, and contralateral lung sparing, in addition to being more efficient at delivery.

OSTI ID:
22262842
Journal Information:
Medical Dosimetry, Vol. 38, Issue 4; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0958-3947
Country of Publication:
United States
Language:
English