skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acoustic-phonon-limited mobility and giant phonon-drag thermopower in MgZnO/ZnO heterostructures

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4848374· OSTI ID:22261800
 [1]
  1. Materials Science Department, University of Patras, Patras 26 504 (Greece)

We present numerical simulations for the acoustic-phonon-limited mobility, μ{sub ac}, in two-dimensional electron gases (2DEGs) confined in MgZnO/ZnO heterostructures for temperatures 0.4–20 K. The calculations are based on the semiclassical Boltzmann equation. We examine two 2DEGs with sheet densities 1.4 and 7×10{sup 15} m{sup −2}. Good agreement is found with recent experimental data without any adjustable parameter. We also calculate the contribution to thermopower that arises due to the phonon wind set up by a temperature gradient (the so-called phonon-drag thermopower, S{sup g}). A giant magnitude of S{sup g} is predicted that exceeds 50–100 mV/K at 5 K depending on the sheet density. Our findings suggest that the ZnO based heterostructures could be promising materials for thermoelectric applications at low temperatures.

OSTI ID:
22261800
Journal Information:
AIP Conference Proceedings, Vol. 1566, Issue 1; Conference: ICPS 2012: 31. international conference on the physics of semiconductors, Zurich (Switzerland), 29 Jul - 3 Aug 2012; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English