skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4861471· OSTI ID:22257119
; ; ; ;  [1];  [2];  [3];  [3];  [3];  [4]
  1. Université Européenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France)
  2. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)
  3. ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain)
  4. Equipe de Physique des Surfaces et Interfaces, Institut de Physique de Rennes UMR UR1-CNRS 6251, Université de Rennes 1, F-35042 Rennes Cedex (France)

The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.

OSTI ID:
22257119
Journal Information:
Applied Physics Letters, Vol. 104, Issue 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English

Similar Records

Theoretical and Experimental Examination of the Intermediate-Band Concept for Strain-Balanced (In,Ga)As/Ga(As,P) Quantum Dot Solar Cells
Journal Article · Sat Nov 01 00:00:00 EDT 2008 · Physical Review. B, Condensed Matter and Materials Physics · OSTI ID:22257119

Prediction of a strain-induced conduction-band minimum in embedded quantum dots
Journal Article · Sun Feb 01 00:00:00 EST 1998 · Physical Review, B: Condensed Matter · OSTI ID:22257119

Structure, strain, and composition profiling of InAs/GaAs(211)B quantum dot superlattices
Journal Article · Thu Jan 21 00:00:00 EST 2016 · Journal of Applied Physics · OSTI ID:22257119