Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections
State-resolved analyses of N + N{sub 2} are performed using the direct simulation Monte Carlo (DSMC) method. In describing the elastic collisions by a state-resolved method, a state-specific total cross section is proposed. The state-resolved method is constructed from the state-specific total cross section and the rovibrational state-to-state transition cross sections for bound-bound and bound-free transitions taken from a NASA database. This approach makes it possible to analyze the rotational-to-translational, vibrational-to-translational, and rotational-to-vibrational energy transfers and the chemical reactions without relying on macroscopic properties and phenomenological models. In nonequilibrium heat bath calculations, the results of present state-resolved DSMC calculations are validated with those of the master equation calculations and the existing shock-tube experimental data for bound-bound and bound-free transitions. In various equilibrium and nonequilibrium heat bath conditions and 2D cylindrical flows, the DSMC calculations by the state-resolved method are compared with those obtained with previous phenomenological DSMC models. In these previous DSMC models, the variable soft sphere, phenomenological Larsen-Borgnakke, quantum kinetic, and total collision energy models are considered. From these studies, it is concluded that the state-resolved method can accurately describe the rotational-to-translational, vibrational-to-translational, and rotational-to-vibrational transfers and quasi-steady state of rotational and vibrational energies in nonequilibrium chemical reactions by state-to-state kinetics.
- OSTI ID:
- 22257099
- Journal Information:
- Physics of Fluids (1994), Journal Name: Physics of Fluids (1994) Journal Issue: 1 Vol. 26; ISSN 1070-6631; ISSN PHFLE6
- Country of Publication:
- United States
- Language:
- English
Similar Records
A study of internal energy relaxation in shocks using molecular dynamics based models
DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models