skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase equilibrium in argon films stabilized by homogeneous surfaces and thermodynamics of two-stage melting transition

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4865751· OSTI ID:22255098
 [1]
  1. Ioffe Physical Technical Institute, 26 Polytechnicheskaya, St. Petersburg 194021 (Russian Federation)

Freezing of gases adsorbed on open surfaces (e.g., graphite) and in narrow pores is a widespread phenomenon which is a subject of a large number of publications. Modeling of the gas/liquid–solid transition is usually accomplished with a molecular simulation technique. However, quantitative analysis of the gas/liquid–solid coexistence and thermodynamic properties of the solid layer still encounters serious difficulties. This is mainly due to the effect of simulation box size on the lattice constant. Since the lattice constant is a function of loading and temperature, once the ordering transition has occurred, the simulation box size must be corrected in the course of simulation according to the Gibbs–Duhem equation. A significant problem is also associated with accurate prediction of the two-dimensional liquid–solid coexistence because of a small difference in densities of coexisting phases. The aim of this study is thermodynamic analysis of the two-dimensional phase coexistence in systems involving crystal-like free of defects layers in narrow slit pores. A special attention was paid to the determination of triple point temperatures. It is shown that intrinsic properties of argon monolayer adsorbed on the graphite surface are similar to those of isolated monolayer accommodated in the slit pore having width of two argon collision diameters. Analysis of the latter system is shown to be clearer and less time-consuming than the former one, which has allowed for explanation of the experimentally observed two-stage melting transition of argon monolayer on graphite without invoking the periodic surface potential modulation and orientational transition.

OSTI ID:
22255098
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 7; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English