skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum modelling of hydrogen chemisorption on graphene and graphite

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4867995· OSTI ID:22253405
 [1]; ;  [2]
  1. Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Tř. 17. listopadu 12, 771 46 Olomouc (Czech Republic)
  2. Laboratoire Collisions Agrégats Réactivité, IRSAMC and UMR5589 du CNRS, Université de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse cedex (France)

The chemisorption of hydrogen on graphene or graphite is studied within a quantum formalism involving a subsystem coupled to a phonon bath. The subsystem includes the hydrogen atom approaching the surface perpendicularly right on top of a carbon atom which puckers out of the surface. The bath includes the acoustic and optical phonon modes vibrating perpendicularly to the surface. Couplings between subsystem and bath are obtained with a periodic density functional theory calculation. Trapping probabilities are obtained as a function of the hydrogen atom kinetic energy. These results are discussed in the light of the experimental hydrogenation studies performed on graphite by Zecho et al. [J. Chem. Phys. 117, 8486 (2002)] and on graphene by Haberer et al. [Adv. Mater. 23, 4497 (2011)].

OSTI ID:
22253405
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English