skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structure, stability, and electronic property of carbon-doped gold clusters Au{sub n}C{sup −} (n = 1–10): A density functional theory study

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4852179· OSTI ID:22253162
; ; ; ; ;  [1]; ;  [1]
  1. Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

The equilibrium geometric structures, relative stabilities, and electronic properties of Au{sub n}C{sup −} and Au{sub n+1}{sup −} (n = 1–10) clusters are systematically investigated using density functional theory with hyper-generalized gradient approximation. The optimized geometries show that one Au atom capped on Au{sub n−1}C{sup −} clusters is a dominant growth pattern for Au{sub n}C{sup −} clusters. In contrast to Au{sub n+1}{sup −} clusters, Au{sub n}C{sup −} clusters are most stable in a quasi-planar or three-dimensional structure because C doping induces the local non-planarity while the rest of the structure continues to grow in a planar mode, resulting in an overall non-2D configuration. The relative stability calculations show that the impurity C atom can significantly enhance the thermodynamic stability of pure gold clusters. Moreover, the effect of C atom on the Au{sub n}{sup −} host decreases with the increase of cluster size. The HOMO-LUMO gap curves show that the interaction of the C atom with Au{sub n}{sup −} clusters improves the chemical stability of pure gold clusters, except for Au{sub 3}{sup −} and Au{sub 4}{sup −} clusters. In addition, a natural population analysis shows that the charges in corresponding Au{sub n}C{sup −} clusters transfer from the Au{sub n}{sup −} host to the C atom. Meanwhile, a natural electronic configuration analysis also shows that the charges mainly transfer between the 2s and 2p orbitals within the C atom.

OSTI ID:
22253162
Journal Information:
Journal of Chemical Physics, Vol. 139, Issue 24; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English