skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

Abstract

Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarraymore » and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.« less

Authors:
 [1];  [2]; ; ; ;  [1];  [1];  [3]
  1. Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China)
  2. Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China)
  3. (China)
Publication Date:
OSTI Identifier:
22239605
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 435; Journal Issue: 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALBUMINS; ARGON FLUORIDES; CELL PROLIFERATION; HEPATITIS; LIVER; NEOPLASMS; PHENOBARBITAL; TRANSGENIC MICE; TUMOR PROMOTERS; VIRUSES

Citation Formats

Hu, Wen-Ta, Li, Hui-Chun, Lee, Shen-Kao, Ma, Hsin-Chieh, Yang, Chee-Hing, Chen, Hung-Ling, Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw, and Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice. United States: N. p., 2013. Web. doi:10.1016/J.BBRC.2013.04.059.
Hu, Wen-Ta, Li, Hui-Chun, Lee, Shen-Kao, Ma, Hsin-Chieh, Yang, Chee-Hing, Chen, Hung-Ling, Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw, & Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice. United States. doi:10.1016/J.BBRC.2013.04.059.
Hu, Wen-Ta, Li, Hui-Chun, Lee, Shen-Kao, Ma, Hsin-Chieh, Yang, Chee-Hing, Chen, Hung-Ling, Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw, and Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan. Fri . "Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice". United States. doi:10.1016/J.BBRC.2013.04.059.
@article{osti_22239605,
title = {Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice},
author = {Hu, Wen-Ta and Li, Hui-Chun and Lee, Shen-Kao and Ma, Hsin-Chieh and Yang, Chee-Hing and Chen, Hung-Ling and Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw and Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan},
abstractNote = {Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.},
doi = {10.1016/J.BBRC.2013.04.059},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 435,
place = {United States},
year = {Fri May 24 00:00:00 EDT 2013},
month = {Fri May 24 00:00:00 EDT 2013}
}
  • Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATXmore » transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis.« less
  • The Hepatitis B virus X (HBx) protein has been strongly implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, effects of the HBx protein on cell proliferation and cell death are controversial. This study investigates the effects of the HBx protein on liver regeneration in two independent lines of HBx transgenic mice, which developed HCC at around 14 to 16 months of age. High mortality, lower liver mass restoration, and impaired liver regeneration were found in the HBx transgenic mice post-hepatectomy. The levels of alanine aminotransferase and {alpha}-fetoprotein detected post-hepatectomy increased significantly in the HBx transgenic livers, indicating that theymore » were more susceptible to damage during the regenerative process. Prolonged activation of the immediate-early genes in the HBx transgenic livers suggested that the HBx protein creates a strong effect by promoting the transition of the quiescent hepatocytes from G0 to G1 phase. However, impaired DNA synthesis and mitosis, as well as inhibited activation of G1, S, and G2/M markers, were detected. These results indicated that HBx protein exerted strong growth arrest on hepatocytes and imbalanced cell-cycle progression resulting in the abnormal cell death; this was accompanied by severe fat accumulation and impaired glycogen storage in the HBx transgenic livers. In conclusion, this study provides First physiological evidence that HBx protein blocks G1/S transition of the hepatocyte cell-cycle progression and causes both a failure of liver functionality and cell death in the regenerating liver of the HBx transgenic mice.« less
  • Dysregulation of mitogen-activated protein kinase (MAPK) signaling pathways by various viruses has been shown to be responsible for viral pathogenicity. The molecular mechanism by which hepatitis C virus (HCV) infection caused human liver diseases has been investigated on the basis of abnormal intracellular signal events. Current data are very limited involved in transmembrane signal transduction triggered by HCV E2 protein. Here we explored regulation of the MAPK/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway by E2 expressed in Chinese hamster oval cells. In human hepatoma Huh-7 cells, E2 specifically activated the MAPK/ERK pathway including downstream transcription factor ATF-2 and greatly promoted cellmore » proliferation. CD81 and low density lipoprotein receptor (LDLR) on the cell surface mediated binding of E2 to Huh-7 cells. The MAPK/ERK activation and cell proliferation driven by E2 were suppressed by blockage of CD81 as well as LDLR. Furthermore, pretreatment with an upstream kinase MEK1/2 inhibitor U0126 also impaired the MAPK/ERK activation and cell proliferation induced by E2. Our results suggest that the MAPK/ERK signaling pathway triggered by HCV E2 via its receptors maintains survival and growth of target cells.« less
  • A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection intomore » the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens.« less
  • Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), amore » key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.« less