skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct Reduction of Waste through Refining of DOE Metal Assets - 13632

Conference ·
OSTI ID:22225171
; ;  [1]
  1. Chemical Vapour Metal Refining - CVMR (United States)

CVMR{sup R} presents a technology for refining nickel from the enrichment barrier materials of the DOE that is proven through 100 years of use by the metals industry. CVMR{sup R} applies modern controls, instrumentation for process and monitoring of the system, and innovative production methods to produce a wide spectrum of products that generate new technology applications and improvements to our society and economy. CVMR{sup R} will receive barrier materials as a secure operation and size reduce the metal to a shred that is fed to a carbonylation reactor where nickel is reacted with carbon monoxide and generate nickel carbonyl. The carbonyl will be filtered and decomposed with heat to form a variety of products that include high value nano powders, coated substrates, net shapes and pure nickel. The residue from the reactor will retain radionuclides from enrichment activities. The carbon monoxide will only react and extract nickel under the operating conditions to leave volumetric contamination in the unreacted residue. A demonstration plant was designed and built by CVMR{sup R} and operated by BWXT, to demonstrate the systems capabilities to DOE in 2006. A pilot plant operation precedes the detailed design of the nickel refinery and provides essential data for design, safe work practices, waste characterizations and system kinetics and confirms the project feasibility. CVMR{sup R} produces nickel products that are cleaner than the nickel in U.S. commerce and used by industry today. The CVMR{sup R} process and systems for nickel refining is well suited for DOE materials and will provide value through environmental stewardship, recovery of high value assets, and support of the DOE environmental remediation programs as the refined nickel generates additional long term benefits to local communities. (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI ID:
22225171
Report Number(s):
INIS-US-13-WM-13632; TRN: US14V0759046126
Resource Relation:
Conference: WM2013: Waste Management Conference: International collaboration and continuous improvement, Phoenix, AZ (United States), 24-28 Feb 2013; Other Information: Country of input: France
Country of Publication:
United States
Language:
English