skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1]; ;  [2]; ;  [3];  [4];  [2];  [1]
  1. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States)
  2. Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)
  3. Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)
  4. The Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas (United States)

Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

OSTI ID:
22224429
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 85, Issue 5; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English