skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Critical Dose of Internal Organs Internal Exposure - 13471

Conference ·
OSTI ID:22221434
;  [1];  [2]
  1. Nuclear and Radiation Safety Centre (Armenia)
  2. Yerevan State Medical University 4Tigran Mets,375010 Yerevan (Armenia)

The health threat posed by radionuclides has stimulated increased efforts to developed characterization on the biological behavior of radionuclides in humans in all ages. In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is assembling a set of age specific biokinetic models for environmentally important radioelements. Radioactive substances in the air, mainly through the respiratory system and digestive tract, is inside the body. Radioactive substances are unevenly distributed in various organs and tissues. Therefore, the degree of damage will depend not only on the dose of radiation have but also on the critical organ, which is the most accumulation of radioactive substances, which leads to the defeat of the entire human body. The main objective of radiation protection, to avoid exceeding the maximum permissible doses of external and internal exposure of a person to prevent the physical and genetic damage people. The maximum tolerated dose (MTD) of radiation is called a dose of radiation a person in uniform getting her for 50 years does not cause changes in the health of the exposed individual and his progeny. The following classification of critical organs, depending on the category of exposure on their degree of sensitivity to radiation: First group: the whole body, gonads and red bone marrow; Second group: muscle, fat, liver, kidney, spleen, gastrointestinal tract, lungs and lens of the eye; The third group: bone, thyroid and skin; Fourth group: the hands, forearms, feet. MTD exposure whole body, gonads and bone marrow represent the maximum exposures (5 rem per year) experienced by people in their normal activities. The purpose of this article is intended dose received from various internal organs of the radionuclides that may enter the body by inhalation, and gastrointestinal tract. The biokinetic model describes the time dependent distribution and excretion of different radionuclides that have intake into the organism or absorbed into blood. Transport of different radionuclides between compartments is assumed to follow first order kinetics provided the concentration in red blood cells (RBCs) stays below a nonlinear threshold concentration. When the concentration in RBCs exceeds that threshold, the transfer rate from diffusible plasma to RBCs is assumed to decrease as the concentration in RBCs increases. For the calculations used capabilities AMBER by using the traces of radionuclides in the body. Model for the transfer of radionuclides in the body has been built on the basis of existing models at AMBER for lead. (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI ID:
22221434
Report Number(s):
INIS-US-13-WM-13471; TRN: US14V0631042389
Resource Relation:
Conference: Waste Management 2013 - WM2013 Conference: International collaboration and continuous improvement, Phoenix, AZ (United States), 24-28 Feb 2013; Other Information: Country of input: France; 17 refs.
Country of Publication:
United States
Language:
English