skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reducing radiation dose to the female breast during CT coronary angiography: A simulation study comparing breast shielding, angular tube current modulation, reduced kV, and partial angle protocols using an unknown-location signal-detectability metric

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4816302· OSTI ID:22220525
;  [1]; ; ;  [2]
  1. Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53233 (United States)
  2. Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland 20905 (United States)

Purpose: The authors compared the performance of five protocols intended to reduce dose to the breast during computed tomography (CT) coronary angiography scans using a model observer unknown-location signal-detectability metric.Methods: The authors simulated CT images of an anthropomorphic female thorax phantom for a 120 kV reference protocol and five “dose reduction” protocols intended to reduce dose to the breast: 120 kV partial angle (posteriorly centered), 120 kV tube-current modulated (TCM), 120 kV with shielded breasts, 80 kV, and 80 kV partial angle (posteriorly centered). Two image quality tasks were investigated: the detection and localization of 4-mm, 3.25 mg/ml and 1-mm, 6.0 mg/ml iodine contrast signals randomly located in the heart region. For each protocol, the authors plotted the signal detectability, as quantified by the area under the exponentially transformed free response characteristic curve estimator (A-caret{sub FE}), as well as noise and contrast-to-noise ratio (CNR) versus breast and lung dose. In addition, the authors quantified each protocol's dose performance as the percent difference in dose relative to the reference protocol achieved while maintaining equivalent A-caret{sub FE}.Results: For the 4-mm signal-size task, the 80 kV full scan and 80 kV partial angle protocols decreased dose to the breast (80.5% and 85.3%, respectively) and lung (80.5% and 76.7%, respectively) with A-caret{sub FE} = 0.96, but also resulted in an approximate three-fold increase in image noise. The 120 kV partial protocol reduced dose to the breast (17.6%) at the expense of increased lung dose (25.3%). The TCM algorithm decreased dose to the breast (6.0%) and lung (10.4%). Breast shielding increased breast dose (67.8%) and lung dose (103.4%). The 80 kV and 80 kV partial protocols demonstrated greater dose reductions for the 4-mm task than for the 1-mm task, and the shielded protocol showed a larger increase in dose for the 4-mm task than for the 1-mm task. In general, the CNR curves indicate a similar relative ranking of protocol performance as the corresponding A-caret{sub FE} curves, however, the CNR metric overestimated the performance of the shielded protocol for both tasks, leading to corresponding underestimates in the relative dose increases compared to those obtained when using the A-caret{sub FE} metric.Conclusions: The 80 kV and 80 kV partial angle protocols demonstrated the greatest reduction to breast and lung dose, however, the subsequent increase in image noise may be deemed clinically unacceptable. Tube output for these protocols can be adjusted to achieve a more desirable noise level with lesser breast dose savings. Breast shielding increased breast and lung dose when maintaining equivalent A-caret{sub FE}. The results demonstrated that comparisons of dose performance depend on both the image quality metric and the specific task, and that CNR may not be a reliable metric of signal detectability.

OSTI ID:
22220525
Journal Information:
Medical Physics, Vol. 40, Issue 8; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English