Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Dynamic rotating-shield brachytherapy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4828778· OSTI ID:22220293
 [1]; ;  [2];  [3];  [4]
  1. Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States)
  2. Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)
  3. Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States)
  4. Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

Purpose: To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process.Methods: A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D{sub 90} for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and {sup 192}Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D{sub 2cc} of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α/β= 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively.Results: For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes/fraction (min/fx) assuming a 10 Ci{sup 192}Ir source, and the average HR-CTV D{sub 90} was 78.9 Gy. In order to match the HR-CTV D{sub 90} of IS + ICBT, D-RSBT required an average of 10.1 min/fx more delivery time, and S-RSBT required 6.7 min/fx more. If an additional 20 min/fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D{sub 90} above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively.Conclusions: For cervical cancer patients, D-RSBT can boost HR-CTV D{sub 90} over IS + ICBT and S-RSBT without violating the tolerance doses to the bladder, rectum, or sigmoid. The D{sub 90} improvements from D-RSBT depend on the patient, the delivery time budget, and the applicator structure.

OSTI ID:
22220293
Journal Information:
Medical Physics, Journal Name: Medical Physics Journal Issue: 12 Vol. 40; ISSN 0094-2405; ISSN MPHYA6
Country of Publication:
United States
Language:
English

Similar Records

Paddle-based rotating-shield brachytherapy
Journal Article · Thu Oct 15 00:00:00 EDT 2015 · Medical Physics · OSTI ID:22482360

Asymmetric dose–volume optimization with smoothness control for rotating-shield brachytherapy
Journal Article · Sat Nov 01 00:00:00 EDT 2014 · Medical Physics · OSTI ID:22317942

Multihelix rotating shield brachytherapy for cervical cancer
Journal Article · Sat Nov 14 23:00:00 EST 2015 · Medical Physics · OSTI ID:22482402