skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells

Journal Article · · Toxicology and Applied Pharmacology
 [1]; ;  [2];  [3]; ; ;  [2];  [1];  [2];  [2]
  1. Department of Immunology, Fourth Military Medical University, Xi'an 710032 (China)
  2. Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032 (China)
  3. Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, MD (United States)

Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood by 4.2-fold (p < 0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4{sup +}CD8{sup −} and peripheral CD4{sup +} T cells was significantly reduced, whereas, CD8{sup +} population was not affected. In contrast to conventional CD4{sup +} T cells, Foxp3{sup +} regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4{sup +} T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4{sup +} thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.

OSTI ID:
22215997
Journal Information:
Toxicology and Applied Pharmacology, Vol. 265, Issue 2; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English