A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion
Journal Article
·
· Toxicology and Applied Pharmacology
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China)
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China)
- UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France)
Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury of hippocampus in IUGR offspring rats.
- OSTI ID:
- 22215960
- Journal Information:
- Toxicology and Applied Pharmacology, Journal Name: Toxicology and Applied Pharmacology Journal Issue: 3 Vol. 264; ISSN TXAPA9; ISSN 0041-008X
- Country of Publication:
- United States
- Language:
- English
Similar Records
Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet
Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats
Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways
Journal Article
·
Fri May 01 00:00:00 EDT 2015
· Toxicology and Applied Pharmacology
·
OSTI ID:22465752
Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats
Journal Article
·
Fri Jan 31 23:00:00 EST 2014
· Toxicology and Applied Pharmacology
·
OSTI ID:22285590
Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways
Journal Article
·
Sun Jul 15 00:00:00 EDT 2012
· Toxicology and Applied Pharmacology
·
OSTI ID:22215363