skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal decomposition behavior of Cu–Al layered double hydroxide, and ethylenediaminetetraacetate-intercalated Cu–Al layered double hydroxide reconstructed from Cu–Al oxide for uptake of Y{sup 3+} from aqueous solution

Journal Article · · Materials Research Bulletin
 [1]; ;  [1]
  1. Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

Graphical abstract: Display Omitted Highlights: ► Decomposition of CO{sub 3}·Cu–Al LDH occurred in four stages. ► The edta·Cu–Al LDH was found to take up Y{sup 3+} in aqueous solution. ► The edta·Cu–Al LDH could selectively take up rare earth ions from a mixed solution. -- Abstract: CO{sub 3}{sup 2−}-intercalated Cu–Al layered double hydroxide (CO{sub 3}·Cu–Al LDH) was calcined to yield Cu–Al oxide, and then ethylenediaminetetraacetate-intercalated Cu–Al LDH (edta·Cu–Al LDH) was prepared by reconstructing Cu–Al oxide in edta solution. Decomposition of CO{sub 3}·Cu–Al LDH occurred in four stages. The production of Cu–Al oxide was caused by the thermal decomposition of CO{sub 3}·Cu–Al LDH until the third stage. The first stage was the elimination of adsorbed surface water and interlayer water in CO{sub 3}·Cu–Al LDH. The second and third stages were the dehydroxylation of the brucite-like octahedral layers and the elimination of CO{sub 3}{sup 2−} intercalated in the interlayers. The edta·Cu–Al LDH was found to take up Y{sup 3+} in aqueous solution. The uptake of Y{sup 3+} was caused not only by the chelating function of Hedta{sup 3−} in the interlayer but also by the chemical behavior of Cu–Al LDH itself. The edta·Cu–Al LDH was found to selectively take up rare earth ions from a mixed solution. The degree of uptake was high, in the order Sc{sup 3+} > Y{sup 3+} > La{sup 3+} for all time durations, which was attributable to differences among the stabilities of Sc(edta){sup −}, Y(edta){sup −} and La(edta){sup −}.

OSTI ID:
22215668
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 12; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English