skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

Journal Article · · Materials Research Bulletin
; ; ;  [1];  [2];  [1]
  1. Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China)
  2. State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

OSTI ID:
22215128
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 6; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English