skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Li{sub y}Ni{sub 0.2}Mn{sub 0.2}Co{sub 0.6}O{sub 2} electrode materials: A structural and magnetic study

Journal Article · · Materials Research Bulletin
 [1];  [1];  [2];  [3];  [3]
  1. LCME, FST Marrakech, University Cadi Ayyad, BP549, Av. A. Khattabi, Marrakech (Morocco)
  2. EEMO, FST Marrakech, University Cadi Ayyad, BP549, Av. A. Khattabi, Marrakech (Morocco)
  3. Instituto Universitario de Ciencia de los Materiales, ICMUV Valencia (Spain)

Graphical abstract: EPR signal of the Li{sub 0.6}Co{sub 0.6}Ni{sub 0.2}Mn{sub 0.2}O{sub 2} composition showing that Mn{sup 4+} ions are the solely paramagnetic ions in the structure. Highlights: Black-Right-Pointing-Pointer LiCo{sub 0.6}Ni{sub 0.2}Mn{sub 0.2}O{sub 2} was prepared by the combustion method with sucrose as a fuel. Black-Right-Pointing-Pointer Chemical delithiaition was performed by using NO{sub 2}BF{sub 4} oxidizing agent. Black-Right-Pointing-Pointer The rhombohedral symmetry was preserved upon lithium removal. Black-Right-Pointing-Pointer Lithium extraction leads to Ni{sup 2+} oxidation to Ni{sup 4+} followed by Co{sup 3+} oxidation. Black-Right-Pointing-Pointer The EPR narrow signal of Li{sub 0.6}Co{sub 0.6}Ni{sub 0.2}Mn{sub 0.2}O{sub 2} is due to the only active Mn{sup 4+} ions. -- Abstract: Layered LiNi{sub 0.2}Mn{sub 0.2}Co{sub 0.6}O{sub 2} phase, belonging to a solid solution between LiNi{sub 1/2}Mn{sub 1/2}O{sub 2} and LiCoO{sub 2} most commercialized cathodes, was prepared via the combustion method at 900 Degree-Sign C for a short time (1 h). Structural and magnetic properties of this material during chemical extraction were investigated. The powders adopted the {alpha}-NaFeO{sub 2} structure with almost none of the well-known Li/Ni cation disorder. The analysis of the magnetic properties in the paramagnetic domain agrees with the combination of Ni{sup 2+} (S = 1), Co{sup 3+} (S = 0) and Mn{sup 4+} (S = 3/2) spin-only values. X-ray analysis of the chemically delithiated Li{sub y}Ni{sub 0.2}Mn{sub 0.2}Co{sub 0.6}O{sub 2} reveals no structural transition. The process of lithium extraction from and insertion into LiNi{sub 0.2}Mn{sub 0.2}Co{sub 0.6}O{sub 2} was discussed on the basis of ex situ EPR experiments and magnetic susceptibility. Oxidation of Ni{sup 2+} (S = 1) to Ni{sup 3+} (S = 1/2) and to Ni{sup 4+} (S = 0) was observed upon lithium removal.

OSTI ID:
22212494
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 4; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English