skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres

Journal Article · · Materials Research Bulletin
 [1];  [1];  [1]; ;  [2]; ;  [1];  [2]
  1. College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)
  2. College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

Graphical abstract: In this paper, flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres were prepared via biomolecule-assisted solvothermal rate with CuCl{sub 2}{center_dot}2H{sub 2}O, GaCl{sub 3}, InCl{sub 3} and L-cystine as raw materials. UV-vis absorption spectrum showed that the band gap of CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} microspheres was about 2.427 eV. Highlights: Black-Right-Pointing-Pointer We reported a small biomolecule-assisted route to synthesis CuIn{sub 0.3}Ga{sub 0.7}S{sub 2}. Black-Right-Pointing-Pointer The possible mechanisms of flower-like CuIn{sub 0.3}Ga{sub 0.7}S{sub 2} microspheres were proposed. Black-Right-Pointing-Pointer The as-prepared CuIn{sub 0.3}Ga{sub 0.7}S{sub 2} products were investigated by XRD, XPS, FESEM and TEM. Black-Right-Pointing-Pointer The optical properties were investigated by UV-vis spectroscopy and Raman spectrum. -- Abstract: We report the formation and characterization of the flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres using CuCl{sub 2}{center_dot}2H{sub 2}O, GaCl{sub 3}, InCl{sub 3} and L-cystine in the mixed solvent of ethylene glycol and distilled water (1:2, v/v) at 200 Degree-Sign C for 24 h. XRD results indicated that the CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} nanostructures have a (1 1 2) preferred orientation. The EDS and XPS analyses of the sample revealed that Cu, In, Ga and S were present in an atomic ratio of approximately 1:0.7:0.3:2. FESEM and TEM images showed that the product was microspheres, consisting of nanoplates with the thickness of about 20 nm. The optical properties were investigated by ultraviolet-visible (UV-vis) absorption spectroscopy and Raman spectroscopy. UV-vis absorption spectrum indicated that the band gap of as-synthesized flower-like CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} microspheres was about 2.427 eV. Raman spectrum of the obtained CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} exhibited a high-intensity peak at 302 cm{sup -1} could be assigned as A1-mode.

OSTI ID:
22212477
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 3; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English