skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cellulose-precursor synthesis of nanocrystalline Co{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} spinel ferrites

Journal Article · · Materials Research Bulletin
 [1];  [1]
  1. Materials Science Research Center, Chiang Mai University, Chiang Mai 50200 (Thailand)

Highlights: Black-Right-Pointing-Pointer Synthesis of spinel copper cobalt nanoferrite particles from a cellulose precursor for the first time. Control of nanosize and properties of nanoferrites can take place by varying the calcining temperature. The simple, low cost, easy cellulose process is a choice of nanoparticle processing technology. -- Abstract: Nanocrystalline Cu{sub 0.5}Co{sub 0.5}Fe{sub 2}O{sub 4} powders were prepared via a metal-cellulose precursor synthetic route. Cellulose was used as a fuel and a dispersing agent. The resulting precursors were calcined in the temperature range of 450-600 Degree-Sign C. The phase development of the samples was determined by using Fourier transform infrared (FT-IR) spectroscopy and powder X-ray diffraction (XRD). The field-dependent magnetizations of the nanopowders were measured by vibrating sample magnetometer (VSM). All XRD patterns are of a spinel ferrite with cubic symmetry. Microstructure of the ferrites showed irregular shapes and uniform particles with agglomeration. From XRD data, the crystallite sizes are in range of 16-42 nm. Saturation magnetization and coercivity increased with increasing calcining temperature due to enhancement of crystallinity and reduction of oxygen vacancies.

OSTI ID:
22212434
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 2; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English