skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrothermal synthesis and luminescence properties of hierarchical SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures

Journal Article · · Materials Research Bulletin
; ;  [1];  [2];  [1];  [1];  [1]
  1. College of Chemistry, Northeast Normal University, Changchun 130024 (China)
  2. State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

Graphical abstract: Uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microsphere assembled by numerous nanoplates have been successfully synthesized via a facile hydrothermal process in the presence of chelating reagent. Highlights: Black-Right-Pointing-Pointer Uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microsphere were obtained by a simple hydrothermal method. Black-Right-Pointing-Pointer The reaction time, chelating reagent and F source play important roles for the formation of hierarchical microspheres. Black-Right-Pointing-Pointer The luminescence properties of lanthanide ion-doped SrF{sub 2} hierarchical microstructures were discussed. -- Abstract: Highly uniform SrF{sub 2} and SrF{sub 2}:Ln{sup 3+} (Ln = Er, Nd, Yb, Eu, Tb) hierarchical microspheres assembled by 2D nanoplates have been successfully synthesized by a facile and friendly hydrothermal route. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the samples. The experimental results indicate that reaction time and chelating reagent play a key role in forming the hierarchical microspheres. The formation mechanism was proposed based on the evolution of this morphology as a function of hydrothermal time. The near-infrared luminescence of lanthanide ions (Er, Nd, and Yb) doped SrF{sub 2} microspheres were discussed in detail. In addition, the as-obtained SrF{sub 2}:Eu{sup 3+} sample exhibits orange-red emission centered at 590 nm under excitation at 393 nm, while the SrF{sub 2}:Tb{sup 3+} exhibits a strong green emission at 540 nm. The as-synthesized SrF{sub 2}:Ln{sup 3+} luminescent microspheres might find some potential applications in areas of photoluminescence, telecommunication and laser emission.

OSTI ID:
22212419
Journal Information:
Materials Research Bulletin, Vol. 47, Issue 2; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English