Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Synthesis, characterization and magnetic performance of Co-incorporated ordered mesoporous carbons

Journal Article · · Materials Research Bulletin
 [1]; ; ; ;  [1]
  1. Institute of Chemistry for Functionalized Materials, Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China)
Highlights: Black-Right-Pointing-Pointer A facile one-pot aqueous self-assembly strategy for the synthesis Co-incorporated ordered mesoporous carbons (Co-OMCs). Black-Right-Pointing-Pointer Co-OMCs exhibit typical ferromagnetic characteristics. Black-Right-Pointing-Pointer Saturation magnetization strength can be easily adjusted by changing the content of cobalt. Black-Right-Pointing-Pointer Carbonization temperatures have significant effects on the structure and magnetic properties of Co-OMCs. -- Abstract: Co-incorporated ordered mesoporous carbon (Co-OMC) with magnetic frameworks has been synthesized via a one-pot self-assembly strategy. The effects of cobalt loading on carbon matrix, adsorption properties and magnetic properties of the resultant mesostructured cobalt/carbon composites were investigated by nitrogen sorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and magnetometer measurements. The results show that the mesoporous composites with a high cobalt content (such as 18.0 wt%) possess an ordered and uniform mesoporous structure (5.3 nm), high surface areas (up to 687 m{sup 2}/g) and high pore volumes (up to 0.54 cm{sup 3}/g). Cobalt nanoparticles of size 4-9 nm are confined inside the mesopores or walls of the mesoporous carbon. These materials exhibit typical ferromagnetic characteristics. The saturation magnetization strength can be easily adjusted by changing the content of cobalt. The carbonization temperatures have significant effects on the structure and magnetic properties of Co-OMC also.
OSTI ID:
22212410
Journal Information:
Materials Research Bulletin, Journal Name: Materials Research Bulletin Journal Issue: 2 Vol. 47; ISSN MRBUAC; ISSN 0025-5408
Country of Publication:
United States
Language:
English