skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preparation and electrochemical properties of Li-rich spinel-type lithium manganate coated LiMn{sub 2}O{sub 4}

Journal Article · · Materials Research Bulletin
;  [1];  [2]; ;  [1];  [1]
  1. College of Chemistry, Beijing Normal University, Beijing 100875 (China)
  2. Analytical and Testing Center, Beijing Normal University, Beijing 100875 (China)

Graphical abstract: Composites in which Li-rich spinel-type lithium manganate was coated on surface of LiMn{sub 2}O{sub 4} particles were prepared, and the cycling stabilities of composites were much improved. Highlights: Black-Right-Pointing-Pointer A composite of Li-rich spinel-type lithium manganate and LiMn{sub 2}O{sub 4}. Black-Right-Pointing-Pointer Li-rich spinel-type lithium manganate coating on the surface of LiMn{sub 2}O{sub 4} particles. Black-Right-Pointing-Pointer A synthetic method of sol-gel followed by heating. Black-Right-Pointing-Pointer Improved cycling stability without large degradation of initial capacity. -- Abstract: Li-rich spinel-type lithium manganate (SC) coated LiMn{sub 2}O{sub 4} composites were prepared and characterized by XRD, SEM, FT-IR, ICP, etc. Their charge/discharge behaviors were studied between 3.0 and 4.3 V at 40 mA g{sup -1} under room temperature, and the results showed that SC coated on surface of LiMn{sub 2}O{sub 4} could improve cycling stability of composite electrodes. The composite (S1) containing 4.8 wt% of SC exhibited noticeably improved cycling stability, whereas the initial specific capacity was very close to that of LiMn{sub 2}O{sub 4}.

OSTI ID:
22212362
Journal Information:
Materials Research Bulletin, Vol. 46, Issue 12; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English