skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of the B-site ordering on the magnetic properties of the new La{sub 3}Co{sub 2}MO{sub 9} double perovskites with M = Nb or Ta

Journal Article · · Materials Research Bulletin
; ;  [1]; ;  [2]
  1. INFIQC (CONICET), Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, X5000HUA Cordoba (Argentina)
  2. Centro Atomico Bariloche, CNEA and Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Rio Negro (Argentina)

Double perovskites La{sub 3}Co{sub 2}NbO{sub 9} and La{sub 3}Co{sub 2}TaO{sub 9} have been prepared by both solid state and sol-gel synthesis. The crystal structures have been studied from X-ray and neutron powder diffraction data. Rietveld refinements show that the crystal structure is monoclinic (P2{sub 1}/n), with different degrees of ordering of B' and B'' cations, with octahedra tilted according to the Glazer notation a{sup -}b{sup -}c{sup +}. Occupancy refinements show that the solid state materials are more B-site ordered than the sol-gel ones. Magnetization measurements show that these perovskites show two magnetic contributions, one with spontaneous magnetization and other with linear behaviour with the magnetic field associated to antiferromagnetic correlations. In the samples synthesized by solid state the spontaneous magnetization is more important than those synthesized by the sol-gel and present T{sub C} of 62 K for Nb and 72 K for Ta. On the other hand, materials prepared by sol-gel have T{sub C} 20 K for Nb and 40 K for Ta, respectively and major presence of the antiferromagnetic contribution. The competition between these magnetic behaviours is interpreted, by a microscopic point of view, as to be due to the different degrees of Co{sup 2+} ions disorder on the B site of the double perovskite structure. This disorder affects the ratio between the antiferromagnetic Co{sup 2+}-O-Co{sup 2+} and the ferromagnetic Co{sup 2+}-O-M{sup 5+}-O-Co{sup 2+} couplings proposed for the system.

OSTI ID:
22209977
Journal Information:
Materials Research Bulletin, Vol. 46, Issue 1; Other Information: Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English