skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

Abstract

Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32more » may become a potentially therapeutic target for APL.« less

Authors:
 [1];  [2];  [1]; ;  [3];  [1]
  1. Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638 (Japan)
  2. (Japan)
  3. Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638 (Japan)
Publication Date:
OSTI Identifier:
22207643
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 417; Journal Issue: 1; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; APOPTOSIS; CARCINOMAS; CELL CYCLE; CELL PROLIFERATION; LEUKEMIA; LIGANDS; LIGASES; MICE; RECEPTORS; RETINOIC ACID; TRANSCRIPTION

Citation Formats

Sato, Tomonobu, Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Okumura, Fumihiko, Iguchi, Akihiro, Ariga, Tadashi, and Hatakeyama, Shigetsugu, E-mail: hatas@med.hokudai.ac.jp. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60. United States: N. p., 2012. Web. doi:10.1016/J.BBRC.2011.12.012.
Sato, Tomonobu, Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Okumura, Fumihiko, Iguchi, Akihiro, Ariga, Tadashi, & Hatakeyama, Shigetsugu, E-mail: hatas@med.hokudai.ac.jp. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60. United States. doi:10.1016/J.BBRC.2011.12.012.
Sato, Tomonobu, Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Okumura, Fumihiko, Iguchi, Akihiro, Ariga, Tadashi, and Hatakeyama, Shigetsugu, E-mail: hatas@med.hokudai.ac.jp. 2012. "TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60". United States. doi:10.1016/J.BBRC.2011.12.012.
@article{osti_22207643,
title = {TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60},
author = {Sato, Tomonobu and Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638 and Okumura, Fumihiko and Iguchi, Akihiro and Ariga, Tadashi and Hatakeyama, Shigetsugu, E-mail: hatas@med.hokudai.ac.jp},
abstractNote = {Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.},
doi = {10.1016/J.BBRC.2011.12.012},
journal = {Biochemical and Biophysical Research Communications},
number = 1,
volume = 417,
place = {United States},
year = 2012,
month = 1
}
  • This research indicates thatn retinoic acid receptor (RAR)-retinoid X receptor (RXR) heterodimers activate transcription of RA-responsive genes and induce cell differentiation of P19 and F9 cells in a ligand-dependent manner. 43 refs., 4 figs., 2 tabs.
  • Inositol phosphates (InsPs) and diacyglycerol (DAG) are second messengers derived via the breakdown of inositol phospholipids, and which play important signalling roles in the regulation of proliferation of some cell types. The authors have studied the operation of this pathway during the early stages of retionic acid (RA)-induced granulocytic differentiation of HL60 myeloid leukemia cells. The autonomous breakdown of inositol lipids that occurred in HL60 cells labeled with (3H) inositol was completely abolished following 48 hours of RA treatment. The rate of influx of 45Ca2+ was also significantly decreased at 48 hours, consistent with the role of inositol lipid-derived secondmore » messengers in regulating Ca2+ entry into cells. The downregulation of inositol lipid metabolism clearly preceded the onset of reduced proliferation induced by RA treatment, and was therefore not a consequence of decreased cell growth. The generation of InsPs in RA-treated cells was reactivated by the fluoroaluminate ion, a direct activator of guanine nucleotide-binding protein(s) (G proteins) that regulate the inositol lipid signalling pathway. Subtle alterations to a regulatory mechanism may therefore mediate the RA-induced downregulation of this pathway. The data are consistent with the hypothesis that the autonomous generation of inositol lipid-derived second messengers may contribute to the continuous proliferation of HL60 cells, and that the RA-induced downregulation of this pathway may, in turn, play a role in signalling the cessation of proliferation that preceedes granulocytic differentiation.« less
  • Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation alongmore » the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.« less
  • Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferationmore » and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.« less
  • We have previously shown that human leukemic cells proliferate normally in serum-free media containing various transferrin forms, but the addition of transferrin-gallium leads to inhibition of cellular proliferation. Because gallium has therapeutic potential, the effects of transferrin-gallium on leukemic cell proliferation, transferrin receptor expression, and cellular iron utilization were studied. The cytotoxicity of gallium is considerably enhanced by its binding to transferrin and cytotoxicity can be reversed by transferrin-iron but not by other transferrin forms. Exposure to transferrin-gallium leads to a marked increase in cell surface transferrin binding sites, but despite this, cellular /sup 59/Fe incorporation is inappropriately low. Althoughmore » shunting of transferrin-gallium to another cellular compartment has not been ruled out, other studies suggest that transferrin-gallium impairs intracellular release of /sup 59/Fe from transferrin by interfering with processes responsible for intracellular acidification. These studies, taken together, demonstrate that inhibition of cellular iron incorporation by transferrin-gallium is a prerequisite for inhibition of cellular proliferation.« less