skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

Journal Article · · Biochemical and Biophysical Research Communications
;  [1]
  1. Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland)

Highlights: Black-Right-Pointing-Pointer Expansion in low oxygen enhances MSC proliferation and osteogenesis. Black-Right-Pointing-Pointer Differentiation in low oxygen enhances chondrogenesis and suppresses hypertrophy. Black-Right-Pointing-Pointer Oxygen can regulate the MSC phenotype for use in tissue engineering applications. -- Abstract: The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO{sub 2}) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO{sub 2}). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO{sub 2} proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO{sub 2} also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO{sub 2} was found to be a more potent promoter of chondrogenesis than expansion at 5% pO{sub 2}. Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO{sub 2} compared to 5% pO{sub 2}. Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO{sub 2} also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a chondrogenic phenotype for use in cartilage repair therapies or to promote hypertrophy of cartilaginous grafts for endochondral bone repair strategies.

OSTI ID:
22207626
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 417, Issue 1; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English