skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [1]
  1. School of Chemistry, University of Sydney, New South Wales 2006 (Australia)

Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo-MGD cofactor. Two mesophilic {r_reversible} psychrophilic substitutions (Asn {r_reversible} His, Val {r_reversible} Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain {pi}-{pi} and/or cation-{pi} interactions. Three mesophilic {r_reversible} psychrophilic substitutions occurred within 4.5 A of the Mo-MGD cofactor (Phe {r_reversible} Met, Ala {r_reversible} Ser, Ser {r_reversible} Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding networks. These results contribute to the understanding of thermal protein adaptation in a redox-active mononuclear molybdenum enzyme and have implications in optimizing the design of low-temperature environmental biosensors.

OSTI ID:
22207553
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 414, Issue 4; Other Information: Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English

Similar Records

Resolution of two native monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina and the sequence of two napA genes
Journal Article · Fri Jul 16 00:00:00 EDT 2010 · Biochemical and Biophysical Research Communications · OSTI ID:22207553

Reduction of Nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA
Journal Article · Thu Apr 23 00:00:00 EDT 2009 · The ISME Journal, 3(8):966-976 · OSTI ID:22207553

Reduction of nitrate in Shewanella
Journal Article · Thu Jan 01 00:00:00 EST 2009 · The ISME Journal: Multidisciplinary Journal of Microbial Ecology · OSTI ID:22207553