skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice

Journal Article · · Biochemical and Biophysical Research Communications
 [1];  [1];  [2]; ; ;  [1];  [3];  [2];  [2];  [1]
  1. Division of Biopharmaceutics, LACDR, Leiden University (Netherlands)
  2. Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan)
  3. Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University (Japan)

Objectives: To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. Methods and results: Chimeras with dysfunctional macrophage ABCA5 (ABCA5{sup -M/-M}) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5{sup -/-}) mice into irradiated LDLr{sup -/-} mice. In vitro, bone marrow-derived macrophages from ABCA5{sup -M/-M} chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr{sup -/-} mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5{sup -M/-M} chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5{sup -M/-M} chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding. Conclusions: ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr{sup -/-} mice.

OSTI ID:
22202504
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 395, Issue 3; Other Information: Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English