skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cobalt-iron red-ox behavior in nanostructured La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} cathodes

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [1]
  1. CONICET-CNEA Departamento de Caracterizacion de Materiales, Centro Atomico Bariloche, Av. Bustillo 9500, S.C. de Bariloche R8402AGP, Rio Negro (Argentina)

Nano-sized La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) perovskite samples (prepared by a conventional acetate route and a novel acetate synthesis with HMTA additives), were tested simulating a red-ox cycle. The crystallography was studied by X-ray Powder Diffraction (XPD) and the changes in the oxidation state of the perovskite B-site were evaluated by synchrotron X-ray Absorption Near Edge Spectroscopy (XANES). After a reducing treatment, LSFC particles show the appearance of a new phase that coexists with the original one. The structural change is accompanied by a Co and Fe formal oxidation states decrease, although Fe remains always closer to 4+ and Co closer to 3+. The treatment produces a B-site valence average reduction from 3.52+ to 3.26+ and the formation of oxygen vacancies. A re-oxidation treatment under O{sub 2} rich atmosphere at 800 Degree-Sign C for 10 h shows that the change is reversible and independent of the two chemical methods used to synthesize the LSCF nano-particles. - Graphical abstract: XANES and XPD measurements in nanostructured LSCF before (black) and after (red/green) a red/ox cycle. Highlights: Black-Right-Pointing-Pointer Red-ox treatments in LSCF nano-particles cause a reversible reaction. Black-Right-Pointing-Pointer XPD analyses show that a new 'reduced' phase coexist with the oxidize one. Black-Right-Pointing-Pointer The B-site formal oxidation state decreases and the {delta} increases upon reduction. Black-Right-Pointing-Pointer Fe remains in a higher valence (closer to 4+) than Co (close to 3+). Black-Right-Pointing-Pointer The behavior seems to be independent of the synthesis method used.

OSTI ID:
22150026
Journal Information:
Journal of Solid State Chemistry, Vol. 198; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English