skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced visible light activity of nano-titanium dioxide doped with multiple ions: Effect of crystal defects

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]
  1. National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR), Trivandrum 695019 (India)

Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe{sup 3+} resulted in a relatively lower anatase to rutile phase transformation temperature, while La{sup 3+} addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe{sup 3+} ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La{sup 3+} addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects. - Graphical abstract: Photocatalytic activity studies indicate a synergistic effect of dopants and crystal defects leading to an enhanced photochemical activity. Highlights: Black-Right-Pointing-Pointer An aqueous sol-gel synthesis of Fe{sup 3+} and La{sup 3+} co-doped TiO{sub 2} is being reported. Black-Right-Pointing-Pointer Optical and microstructural properties of titania were modified by co-doping. Black-Right-Pointing-Pointer Enhanced activity of titania by the crystal defects is being reported.

OSTI ID:
22149970
Journal Information:
Journal of Solid State Chemistry, Vol. 196; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English