skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Solvothermal synthesis and tunable luminescence of Tb{sup 3+}, Eu{sup 3+} codoped YF{sub 3} nano- and micro-crystals with uniform morphologies

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]; ; ; ; ; ; ;  [1];  [2]
  1. Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)
  2. College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China)

Tb{sup 3+}, Eu{sup 3+} codoped YF{sub 3} nano- and micro-crystals with the morphologies of ellipsoid-like nanoplate, spindle, sandwich-structural rhombus and nanoaggregate were synthesized through a solvothermal method. The morphologies of the prepared products can be tailored by controlling the volume ratio of ethylene glycol (EG) to H{sub 2}O, solvent type or the reaction time. A possible formation mechanism of the sandwich-structural rhombus like YF{sub 3} phosphor was proposed. The emitting colors of YF{sub 3}:Tb{sup 3+},Eu{sup 3+} phosphors can be easily tuned from yellowish green, yellow to orange by increasing Eu{sup 3+} concentration. The energy transfer from Tb{sup 3+} to Eu{sup 3+} in YF{sub 3} phosphors was studied. It was found that the interaction type between Tb{sup 3+} and Eu{sup 3+} is electric dipole-dipole interaction. - Graphical abstract: Sandwich-structural rhombus like YF{sub 3}:Tb{sup 3+}, Eu{sup 3+} phosphors were synthesized through a solvothermal process. The formation mechanism of the sandwich-structural rhombus like YF{sub 3}:Tb{sup 3+}, Eu{sup 3+} phosphors was studied. Highlights: Black-Right-Pointing-Pointer YF{sub 3} nano- and micro-crystals were synthesized through solvothermal route. Black-Right-Pointing-Pointer A formation mechanism of the sandwich-structural rhombus like YF{sub 3} was proposed. Black-Right-Pointing-Pointer The emitting colors of YF{sub 3}:Tb{sup 3+},Eu{sup 3+} phosphors can be tuned. Black-Right-Pointing-Pointer Energy transfer from Tb{sup 3+} to Eu{sup 3+} is confirmed as electric dipole-dipole interaction.

OSTI ID:
22149930
Journal Information:
Journal of Solid State Chemistry, Vol. 196; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English