skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts

Abstract

Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individual brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions aroundmore » the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.« less

Authors:
 [1]; ; ;  [1];  [2];  [3];  [1]
  1. Department of Radiation Oncology, University Medical Center Freiburg, Freiburg (Germany)
  2. Department of Oncology and Palliative Medicine, Nordland Hospital, Bodo (Norway)
  3. (Norway)
Publication Date:
OSTI Identifier:
22149743
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 85; Journal Issue: 1; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; DOSE EQUIVALENTS; HEALTH HAZARDS; HIPPOCAMPUS; IRRADIATION; METASTASES; PATIENTS; PLANNING; RADIATION DOSES; RADIOTHERAPY; SURGERY

Citation Formats

Prokic, Vesna, E-mail: vesna.prokic@uniklinik-freiburg.de, Wiedenmann, Nicole, Fels, Franziska, Schmucker, Marianne, Nieder, Carsten, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromso, Tromso, and Grosu, Anca-Ligia. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts. United States: N. p., 2013. Web. doi:10.1016/J.IJROBP.2012.02.036.
Prokic, Vesna, E-mail: vesna.prokic@uniklinik-freiburg.de, Wiedenmann, Nicole, Fels, Franziska, Schmucker, Marianne, Nieder, Carsten, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromso, Tromso, & Grosu, Anca-Ligia. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts. United States. doi:10.1016/J.IJROBP.2012.02.036.
Prokic, Vesna, E-mail: vesna.prokic@uniklinik-freiburg.de, Wiedenmann, Nicole, Fels, Franziska, Schmucker, Marianne, Nieder, Carsten, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromso, Tromso, and Grosu, Anca-Ligia. Tue . "Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts". United States. doi:10.1016/J.IJROBP.2012.02.036.
@article{osti_22149743,
title = {Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts},
author = {Prokic, Vesna, E-mail: vesna.prokic@uniklinik-freiburg.de and Wiedenmann, Nicole and Fels, Franziska and Schmucker, Marianne and Nieder, Carsten and Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromso, Tromso and Grosu, Anca-Ligia},
abstractNote = {Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individual brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.},
doi = {10.1016/J.IJROBP.2012.02.036},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 1,
volume = 85,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 2013},
month = {Tue Jan 01 00:00:00 EST 2013}
}
  • Purpose: To retrospectively evaluate the accuracy, plan quality and efficiency of intensity-modulated arc therapy (IMAT) for hippocampal sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) in patients with multiple brain metastases (m-BM). Materials and methods: A total of 5 patients with m-BM were retrospectively replanned for HS-WBRT with SIB using IMAT treatment planning. The hippocampus was contoured on diagnostic T1-weighted magnetic resonance imaging (MRI) which had been fused with the planning CT image set. The hippocampal avoidance zone (HAZ) was generated using a 5-mm uniform margin around the paired hippocampi. The m-BM planning target volumes (PTVs) were contoured onmore » T1/T2-weighted MRI registered with the 3D planning computed tomography (CT). The whole-brain planning target volume (WB-PTV) was defined as the whole-brain tissue volume minus HAZ and m-BM PTVs. Highly conformal IMAT plans were generated in the Eclipse treatment planning system for Novalis-TX linear accelerator consisting of high-definition multileaf collimators (HD-MLCs: 2.5-mm leaf width at isocenter) and 6-MV beam. Prescription dose was 30 Gy for WB-PTV and 45 Gy for each m-BM in 10 fractions. Three full coplanar arcs with orbit avoidance sectors were used. Treatment plans were evaluated using homogeneity (HI) and conformity indices (CI) for target coverage and dose to organs at risk (OAR). Dose delivery efficiency and accuracy of each IMAT plan was assessed via quality assurance (QA) with a MapCHECK device. Actual beam-on time was recorded and a gamma index was used to compare dose agreement between the planned and measured doses. Results: All 5 HS-WBRT with SIB plans met WB-PTV D{sub 2%}, D{sub 98%}, and V{sub 30} {sub Gy} NRG-CC001 requirements. The plans demonstrated highly conformal and homogenous coverage of the WB-PTV with mean HI and CI values of 0.33 ± 0.04 (range: 0.27 to 0.36), and 0.96 ± 0.01 (range: 0.95 to 0.97), respectively. All 5 hippocampal sparing patients met protocol guidelines with maximum dose and dose to 100% of hippocampus (D{sub 100%}) less than 16 and 9 Gy, respectively. The dose to the optic apparatus was kept below protocol guidelines for all 5 patients. Highly conformal and homogenous radiosurgical dose distributions were achieved for all 5 patients with a total of 33 brain metastases. The m-BM PTVs had a mean HI = 0.09 ± 0.02 (range: 0.07 to 0.19) and a mean CI = 1.02 ± 0.06 (range: 0.93 to 1.2). The total number of monitor units (MU) was, on average, 1677 ± 166. The average beam-on time was 4.1 ± 0.4 minute . The IMAT plans demonstrated accurate dose delivery of 95.2 ± 0.6%, on average, for clinical gamma passing rate with 2%/2-mm criteria and 98.5 ± 0.9%, on average, with 3%/3-mm criteria. Conclusions: All hippocampal sparing plans were considered clinically acceptable per NRG-CC001 dosimetric compliance criteria. IMAT planning provided highly conformal and homogenous dose distributions for the WB-PTV and m-BM PTVs with lower doses to OAR such as the hippocampus. These results suggest that HS-WBRT with SIB is a clinically feasible, fast, and effective treatment option for patients with a relatively large numbers of m-BM lesions.« less
  • Purpose: To evaluate the feasibility of using tomotherapy to deliver whole brain radiotherapy with hippocampal avoidance, hypothesized to reduce the risk of memory function decline, and simultaneously integrated boost to brain metastases to improve intracranial tumor control. Methods and Materials: Ten patients treated with radiosurgery and whole brain radiotherapy underwent repeat planning using tomotherapy with the original computed tomography scans and magnetic resonance imaging-computed tomography fusion-defined target and normal structure contours. The individually contoured hippocampus was used as a dose-limiting structure (<6 Gy); the whole brain dose was prescribed at 32.25 Gy to 95% in 15 fractions, and the simultaneousmore » boost doses to individual brain metastases were 63 Gy to lesions {>=}2.0 cm in the maximal diameter and 70.8 Gy to lesions <2.0 cm. The plans were generated with a field width (FW) of 2.5 cm and, in 5 patients, with a FW of 1.0 cm. The plans were compared regarding conformation number, prescription isodose/target volume ratio, target coverage, homogeneity index, and mean normalized total dose. Results: A 1.0-cm FW compared with a 2.5-cm FW significantly improved the dose distribution. The mean conformation number improved from 0.55 {+-} 0.16 to 0.60 {+-} 0.13. Whole brain homogeneity improved by 32% (p <0.001). The mean normalized total dose to the hippocampus was 5.9 {+-} 1.3 Gy{sub 2} and 5.8 {+-} 1.9 Gy{sub 2} for 2.5- and 1.0-cm FW, respectively. The mean treatment delivery time for the 2.5- and 1.0-cm FW plans was 10.2 {+-} 1.0 and 21.8 {+-} 1.8 min, respectively. Conclusion: Composite tomotherapy plans achieved three objectives: homogeneous whole brain dose distribution equivalent to conventional whole brain radiotherapy; conformal hippocampal avoidance; and radiosurgically equivalent dose distributions to individual metastases.« less
  • Purpose: Neurocognitive impairment (NI) in patients with small cell lung cancer (SCLC) after whole brain radiation treatment (WBRT) is a significant cause of morbidity. Hippocampal avoidance (HA) during WBRT may mitigate or prevent NI in such patients. However, this has not been tested in SCLC patients. The estimated risk of metastases in the HA region (HM) in patients with SCLC at diagnosis or after WBRT is unknown. Our study aimed to determine the risk of HM in patients with SCLC and to assess correlated clinical factors. Methods and Materials: Patients with SCLC who experienced brain metastases (BM) at presentation (demore » novo) or after WBRT treated at the Saskatoon Cancer Centre between 2005 and 2012 were studied. Relevant neuroimaging was independently reviewed by a neuroradiologist. HM was defined as metastases within 5 mm of the hippocampus. Logistic regression analysis was performed to assess correlation between various clinical variables and HM. Results: Seventy eligible patients were identified. Of 59 patients presenting with de novo BM, 3 patients (5%, 95% confidence interval [CI]: 0%-10.7%) had HM. Collectively there were 359 (range, 1-33) de novo BM with 3 (0.8%, 95% CI: 0%-1.7%) HM deposits. Twenty patients experienced progression of metastatic disease in the brain after WBRT. Of the 20 patients, only 1 patient (5%, 95% CI: 0%-14.5%) experienced HM. On logistic regression, no factors significantly correlated with HM. Conclusion: The overall incidence of HM before or after WBRT in SCLC patients is low, providing preliminary support for the safety of HA during planned clinical trials of HA-WBRT for SCLC.« less
  • Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N{sub mets}) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV{sub mets}) and of the individual metastasis planning target volume (PTV{sub ind} {sub met}) were 8.7 ± 8.9 cm{sup 3} (range, 1.3-35.5more » cm{sup 3}) and 2.5 ± 4.5 cm{sup 3} (range, 0.19-24.7 cm{sup 3}), respectively. Dose distributions in PTV{sub mets} and PTV{sub ind} {sub met} were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N{sub mets} was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV{sub mets} amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV{sub ind} {sub met} were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV{sub mets} (CN = 0.737 for PTV{sub mets} ≤4.32 cm{sup 3} vs CN = 0.848 for PTV{sub mets} >4.32 cm{sup 3}, P=.006), in contrast to N{sub mets}. The achieved dose conformity to PTV{sub mets}, assessed by both CN and PITV, was in all investigated volume strata well within the best quartile of the values reported for alternative irradiation techniques. Conclusions: HT is a well-suited technique to deliver WBRT with IB to multiple brain metastases, yielding high-quality dose distributions. A multi-institutional prospective randomized phase 2 clinical trial to exploit efficacy and safety of the treatment concept is currently under way.« less
  • Purpose: The majority of patients with brain metastases from melanoma receive whole-brain radiotherapy (WBRT). However, the results are poor. Hypofractionation regimens failed to improve the outcome of these patients. This study investigates a potential benefit from escalation of the WBRT dose beyond the 'standard' regimen 30 Gy in 10 fractions (10x3 Gy). Methods and Materials: Data from 51 melanoma patients receiving WBRT alone were retrospectively analyzed. A dosage of 10x3 Gy (n = 33) was compared with higher doses including 40 Gy/20 fractions (n = 11) and 45 Gy/15 fractions (n = 7) for survival (OS) and local (intracerebral) controlmore » (LC). Additional potential prognostic factors were evaluated: age, gender, performance status, number of metastases, extracerebral metastases, and recursive partitioning analysis (RPA) class. Results: At 6 months, OS rates were 27% after 10x3 Gy and 50% after higher doses (p = 0.009). The OS rates at 12 months were 4% and 20%. On multivariate analysis, higher WBRT doses (p = 0.010), fewer than four brain metastases (p = 0.012), no extracerebral metastases (p = 0.006), and RPA class 1 (p = 0.005) were associated with improved OS. The LC rates at 6 months were 23% after 10x3 Gy and 50% after higher doses (p = 0.021). The LC rates at 12 months were 0% and 13%. On multivariate analysis, higher WBRT doses (p = 0.020) and fewer than brain metastases (p = 0.002) were associated with better LC. Conclusions: Given the limitations of a retrospective study, the findings suggest that patients with brain metastases from melanoma receiving WBRT alone may benefit from dose escalation beyond 10x3 Gy. The hypothesis generated by this study must be confirmed in a randomized trial stratifying for significant prognostic factors.« less