skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: OBSERVATIONS FROM SDO, HINODE, AND STEREO OF A TWISTING AND WRITHING START TO A SOLAR-FILAMENT-ERUPTION CASCADE

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Space Science Office, ZP13, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)
  2. National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

We analyze data from SDO (AIA, HMI), Hinode (SOT, XRT, EIS), and STEREO (EUVI) of a solar eruption sequence of 2011 June 1 near 16:00 UT, with an emphasis on the early evolution toward eruption. Ultimately, the sequence consisted of three emission bursts and two filament ejections. SDO/AIA 304 A images show absorbing-material strands initially in close proximity which over {approx}20 minutes form a twisted structure, presumably a flux rope with {approx}10{sup 29} erg of free energy that triggers the resulting evolution. A jump in the filament/flux rope's displacement (average velocity {approx}20 km s{sup -1}) and the first burst of emission accompanies the flux-rope formation. After {approx}20 more minutes, the flux rope/filament kinks and writhes, followed by a semi-steady state where the flux rope/filament rises at ({approx}5 km s{sup -1}) for {approx}10 minutes. Then the writhed flux rope/filament again becomes MHD unstable and violently erupts, along with rapid (50 km s{sup -1}) ejection of the filament and the second burst of emission. That ejection removed a field that had been restraining a second filament, which subsequently erupts as the second filament ejection accompanied by the third (final) burst of emission. Magnetograms from SDO/HMI and Hinode/SOT, and other data, reveal several possible causes for initiating the flux-rope-building reconnection, but we are not able to say which is dominant. Our observations are consistent with magnetic reconnection initiating the first burst and the flux-rope formation, with MHD processes initiating the further dynamics. Both filament ejections are consistent with the standard model for solar eruptions.

OSTI ID:
22140024
Journal Information:
Astrophysical Journal, Vol. 761, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English