skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ICE AND DUST IN THE PRESTELLAR DARK CLOUD LYNDS 183: PREPLANETARY MATTER AT THE LOWEST TEMPERATURES

Journal Article · · Astrophysical Journal
; ; ;  [1];  [2];  [3];  [4];  [5]
  1. Department of Physics, Applied Physics and Astronomy and New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States)
  2. SETI Institute, Carl Sagan Center, 189 Bernardo Avenue, Mountain View, CA 94043 (United States)
  3. LERMA, UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France)
  4. SOFIA Science Center, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States)
  5. Gemini Observatory, Southern Operations Center, Casilla 603, La Serena (Chile)

Dust grains are nucleation centers and catalysts for the growth of icy mantles in quiescent interstellar clouds, the products of which may accumulate into preplanetary matter when new stars and solar systems form within the clouds. In this paper, we present the first spectroscopic detections of silicate dust and the molecular ices H{sub 2}O, CO, and CO{sub 2} in the vicinity of the prestellar core L183 (L134N). An infrared photometric survey of the cloud was used to identify reddened background stars, and we present spectra covering solid-state absorption features in the wavelength range 2-20 {mu}m for nine of them. The mean composition of the ices in the best-studied line of sight (toward J15542044-0254073) is H{sub 2}O:CO:CO{sub 2} Almost-Equal-To 100:40:24. The ices are amorphous in structure, indicating that they have been maintained at low temperature ({approx}< 15 K) since formation. The ice column density N(H{sub 2}O) correlates with reddening by dust, exhibiting a threshold effect that corresponds to the transition from unmantled grains in the outer layers of the cloud to ice-mantled grains within, analogous to that observed in other dark clouds. A comparison of results for L183 and the Taurus and IC 5146 dark clouds suggests common behavior, with mantles first appearing in each case at a dust column corresponding to a peak optical depth {tau}{sub 9.7} = 0.15 {+-} 0.03 in the silicate feature. Our results support a previous conclusion that the color excess E{sub J-K} does not obey a simple linear correlation with the total dust column in lines of sight that intercept dense clouds. The most likely explanation is a systematic change in the optical properties of the dust as the density increases.

OSTI ID:
22133898
Journal Information:
Astrophysical Journal, Vol. 774, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

THE NATURE OF CARBON DIOXIDE BEARING ICES IN QUIESCENT MOLECULAR CLOUDS
Journal Article · Fri Apr 10 00:00:00 EDT 2009 · Astrophysical Journal · OSTI ID:22133898

ICES IN THE QUIESCENT IC 5146 DENSE CLOUD
Journal Article · Sun Apr 10 00:00:00 EDT 2011 · Astrophysical Journal · OSTI ID:22133898

OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES
Journal Article · Sun Nov 20 00:00:00 EST 2011 · Astrophysical Journal · OSTI ID:22133898