skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of transit dose profile for a {sup 192}Ir HDR source

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4802731· OSTI ID:22130617
 [1]; ;  [2];  [3]; ;  [4]
  1. Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands)
  2. Hospital das Clinicas da Universidade de Sao Paulo - HC/FMUSP, Sao Paulo 05403-900 (Brazil)
  3. Laboratory for Micro- and Nanotechnology Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)
  4. Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Sao Paulo 05508-000 (Brazil)

Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered by the source dwelling 1 s and reached 104.0 cGy per irradiation in a hypothetical clinical case studied in this work. Conclusions: The present work demonstrated that the transit dose correction based on average source speed fails to accurately correct the dose, indicating that the correct speed profile should be considered. The impact on total dose due to the transit dose correction near the dwell positions is significant and should be considered more carefully in treatments with high dose rate, several catheters, multiple dwell positions, small dwell times, and several fractions.

OSTI ID:
22130617
Journal Information:
Medical Physics, Vol. 40, Issue 5; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English